
Analysis of Overhead in

Dynamic Java Performance Monitoring

Vojtěch Horký, Jaroslav Kotrč, Peter Libič and Petr Tůma

Charles University in Prague

Context: Dynamic Monitoring

of Production Systems

Dynamic Monitoring of Production Systems

Measurement probes are active only when needed,

measuring everything all the time might not be practical.

Dynamic Monitoring of Production Systems

Measurement probes are active only when needed,

measuring everything all the time might not be practical.

function of
interest

Application

measurements
database

dynamic
monitoring

control

Dynamic Monitoring of Production Systems

Measurement probes are active only when needed,

measuring everything all the time might not be practical.

function of
interest

Application

measurements
database

dynamic
monitoring

control

We are interested in
performance of

this function

Dynamic Monitoring of Production Systems

Measurement probes are active only when needed,

measuring everything all the time might not be practical.

function of
interest

Application
get time

get time
store difference

measurements
database

dynamic
monitoring

control

Dynamic Monitoring of Production Systems

Measurement probes are active only when needed,

measuring everything all the time might not be practical.

function of
interest

Application
get time

get time
store difference

measurements
database

dynamic
monitoring

control Code is dynamically
instrumented

when measuring.

Dynamic Monitoring of Production Systems

Measurement probes are active only when needed,

measuring everything all the time might not be practical.

function of
interest

Application

measurements
database

dynamic
monitoring

control
Once enough data

is collected,
probes are removed.

Issues of Dynamic Monitoring

In managed environments, code is compiled at run-time;

probe insertion (removal) causes recompilation.

Monitored application can thus behave differently.

Issues of Dynamic Monitoring

In managed environments, code is compiled at run-time;

probe insertion (removal) causes recompilation.

Monitored application can thus behave differently.

Interesting Questions

How do the code manipulations affect the application?

What is the overhead of such probe?

Is the observed performance representative?

Is there zero overhead once the probe is removed?

Experiment Setup

Experiment Coordination

application
code

dynamic
monitoring
framework

measurements
database

Experiment Coordination

application
code

dynamic
monitoring
framework

Experiment

measurements
database

with
static

probes

measurements
database

CPU & JVM
monitoring

experiment
coordination

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Location Method entry and exit points (both)

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Location Method entry and exit points (both)

Instrumentation Static Dynamic (run-time)

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Location Method entry and exit points (both)

Instrumentation Static Dynamic (run-time)

Data collection Continuous On demand

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Location Method entry and exit points (both)

Instrumentation Static Dynamic (run-time)

Data collection Continuous On demand

Implementation Native method (in C) Pure Java

Two Measurement Infrastructures

Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Location Method entry and exit points (both)

Instrumentation Static Dynamic (run-time)

Data collection Continuous On demand

Implementation Native method (in C) Pure Java

dynamic probe

static probe

function of
interest

static
(self)

measurement

dynamic
measurement

Experiment Process

Experiment Process

run for
some
time

Experiment Process

run for
some
time

pick
random
method

Experiment Process

run for
some
time

insert
dynamic

probe

pick
random
method

Dynamic monitoring

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

pick
random
method

Dynamic monitoring

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

pick
random
method

Dynamic monitoring

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

pick
random
method

Dynamic monitoring

What is the
observed

performance?

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

pick
random
method

Dynamic monitoring

How fast it runs
with dynamic
monitoring?

What is the
observed

performance?

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

pick
random
method

Dynamic monitoring

How fast it runs
with dynamic
monitoring?

What is the
observed

performance?

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

pick
random
method

Dynamic monitoring

run for
some
time

How fast it runs
with dynamic
monitoring?

What is the
observed

performance?

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

How fast it runs
with dynamic
monitoring?

What is the
observed

performance?

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

How fast it runs
without dynamic

monitoring?

How fast it runs
with dynamic
monitoring?

What is the
observed

performance?

Experiment Process

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

How fast it runs
without dynamic

monitoring?

How fast it runs
with dynamic
monitoring?

What is the
observed

performance?

Platform and Application Details

Platform and Application Details

– Hardware: 32 CPUs, 2 NUMA nodes, 48G RAM.

Platform and Application Details

– Hardware: 32 CPUs, 2 NUMA nodes, 48G RAM.

– SPECjbb2015 augmented with static probes.

– Fixed request rate 4 000 reqs/s.

(Close to maximum with static probes on our hardware.)

– Over 1 200 monitored methods.

– Business code of the benchmark.

– Practically all methods called frequently enough.

– About one minute of dynamic monitoring per method.

Platform and Application Details

– Hardware: 32 CPUs, 2 NUMA nodes, 48G RAM.

– SPECjbb2015 augmented with static probes.

– Fixed request rate 4 000 reqs/s.

(Close to maximum with static probes on our hardware.)

– Over 1 200 monitored methods.

– Business code of the benchmark.

– Practically all methods called frequently enough.

– About one minute of dynamic monitoring per method.

– Several TBs of raw data per week of run-time.

Results

Overall Overhead of Dynamic Monitoring

Overall Overhead of Dynamic Monitoring

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

Record CPU
utilization with

dynamic monitoring
...

…
and without it.

Overall Overhead of Dynamic Monitoring

70 72 74 76 78 80 82

8
0

0
4

0
0

0
4

0
0

8
0

0

Without dynamic monitoring

With dynamic monitoring

CPU utilization [%]

F
re

q
u

e
n

c
y

Overall Overhead of Dynamic Monitoring

70 72 74 76 78 80 82

8
0

0
4

0
0

0
4

0
0

8
0

0

Without dynamic monitoring

With dynamic monitoring

CPU utilization [%]

F
re

q
u

e
n

c
y

Measuring one method (even a hot one)

at a time brings no significant overhead.

Time Needed for Just-in-time Recompilation

Time Needed for Just-in-time Recompilation

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

Record
Just-in-time compiler

events here ...

…
and here.

Time Needed for Just-in-time Recompilation

0 10 20 30 40

6
0

0
3

0
0

0
3

0
0

6
0

0

Recompilation duration [s]

(waited for a minute without JIT activity)

F
re

q
u

e
n

c
y

Instrumentation

(probe inserted)

Deinstrumentation

(probe removed)

Time Needed for Just-in-time Recompilation

0 10 20 30 40

6
0

0
3

0
0

0
3

0
0

6
0

0

Recompilation duration [s]

(waited for a minute without JIT activity)

F
re

q
u

e
n

c
y

Instrumentation

(probe inserted)

Deinstrumentation

(probe removed)

JIT compiler typically needs at least 30 s

to finish recompilations after

probe insertion (removal).

Accuracy of Collected Data

Accuracy of Collected Data

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

Ratio between
observed and baseline

performance.

Accuracy of Collected Data

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

0
1

0
0

1
5

0
2

0
0

Method execution time (static probe) [s]

R
a

ti
o

 b
e

tw
e

e
n

 t
im

e
s
 r

e
p

o
rt

e
d

b
y
 s

ta
ti
c
 a

n
d

 d
y
n

a
m

ic
 p

ro
b

e
s

Accuracy of Collected Data

0 10 20 30 40

1
.0

2
.0

3
.0

4
.0

Method execution time (static probe) [µs]

R
a

ti
o

 b
e

tw
e

e
n

 t
im

e
s
 r

e
p

o
rt

e
d

b
y
 s

ta
ti
c
 a

n
d

 d
y
n

a
m

ic
 p

ro
b

e
s

Accuracy of Collected Data

0 10 20 30 40

1
.0

2
.0

3
.0

4
.0

Method execution time (static probe) [µs]

R
a

ti
o

 b
e

tw
e

e
n

 t
im

e
s
 r

e
p

o
rt

e
d

b
y
 s

ta
ti
c
 a

n
d

 d
y
n

a
m

ic
 p

ro
b

e
s Interpretation of numbers

from dynamic monitoring:

Observed Actual

50 µs 45 µs – 50 µs

20 µs 10 µs – 20 µs

2 µs 1
2 µs – 2 µs

Impact of Dynamic Monitoring

Impact of Dynamic Monitoring

run for
some
time

run for
some
time

insert
dynamic

probe

dump from
static

probes

dump from
dynamic

probe

remove
dynamic

probe

dump from
static

probes

pick
random
method

Dynamic monitoring

run for
some
time

Ratio of baseline
performance

with and without
dynamic monitoring

Impact of Dynamic Monitoring
F

re
q

u
e

n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

0
4

0
6

0

Static probes: ratio of mean execution times during

and after dynamic instrumentation

F
re

q
u

e
n

c
y

Faster when Slower when

being monitored being monitored

⇐ ⇒

Impact of Dynamic Monitoring
F

re
q

u
e

n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

0
4

0
6

0

Static probes: ratio of mean execution times during

and after dynamic instrumentation

F
re

q
u

e
n

c
y

Faster when Slower when

being monitored being monitored

⇐ ⇒

Impact of Dynamic Monitoring
F

re
q

u
e

n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

0
4

0
6

0

Static probes: ratio of mean execution times during

and after dynamic instrumentation

F
re

q
u

e
n

c
y

Faster when Slower when

being monitored being monitored

⇐ ⇒

Dynamic monitoring can observe shorter times

(as if the probes speeded-up the application).

Conclusion

Analysis of Overhead

in Dynamic Java Performance Monitoring

We evaluated how dynamic monitoring affects a running application

and what is the accuracy of the obtained data.

Analysis of Overhead

in Dynamic Java Performance Monitoring

We evaluated how dynamic monitoring affects a running application

and what is the accuracy of the obtained data.

Rules of thumb coming from our experiment . . .
– Measuring one method at a time does not change CPU utilization.

– At least 30 s are needed for (JIT) recompilation.

– If the reported time is 30 µs . . .

. . . the actual duration is between 20 µs and 40 µs

(durations of at least 100 µs are more “trustworthy”, though).

Analysis of Overhead

in Dynamic Java Performance Monitoring

We evaluated how dynamic monitoring affects a running application

and what is the accuracy of the obtained data.

Rules of thumb coming from our experiment . . .
– Measuring one method at a time does not change CPU utilization.

– At least 30 s are needed for (JIT) recompilation.

– If the reported time is 30 µs . . .

. . . the actual duration is between 20 µs and 40 µs

(durations of at least 100 µs are more “trustworthy”, though).

http://d3s.mff.cuni.cz/resources/icpe2016

Analysis of Overhead

in Dynamic Java Performance Monitoring

We evaluated how dynamic monitoring affects a running application

and what is the accuracy of the obtained data.

Rules of thumb coming from our experiment . . .
– Measuring one method at a time does not change CPU utilization.

– At least 30 s are needed for (JIT) recompilation.

– If the reported time is 30 µs . . .

. . . the actual duration is between 20 µs and 40 µs

(durations of at least 100 µs are more “trustworthy”, though).

http://d3s.mff.cuni.cz/resources/icpe2016

Thank You!

