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Issues of Dynamic Monitoring

In managed environments, code is compiled at run-time;

probe insertion (removal) causes recompilation.

Monitored application can thus behave differently.

Interesting Questions

How do the code manipulations affect the application?

What is the overhead of such probe?

Is the observed performance representative?

Is there zero overhead once the probe is removed?
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Self-measurement Dynamic monitoring

Performance Baseline “Observed”

Location Method entry and exit points (both)

Instrumentation Static Dynamic (run-time)

Data collection Continuous On demand

Implementation Native method (in C) Pure Java
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Platform and Application Details

– Hardware: 32 CPUs, 2 NUMA nodes, 48G RAM.

– SPECjbb2015 augmented with static probes.

– Fixed request rate 4 000 reqs/s.

(Close to maximum with static probes on our hardware.)

– Over 1 200 monitored methods.

– Business code of the benchmark.

– Practically all methods called frequently enough.

– About one minute of dynamic monitoring per method.

– Several TBs of raw data per week of run-time.
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Measuring one method (even a hot one)

at a time brings no significant overhead.
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JIT compiler typically needs at least 30 s

to finish recompilations after

probe insertion (removal).
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Dynamic monitoring can observe shorter times

(as if the probes speeded-up the application).
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We evaluated how dynamic monitoring affects a running application

and what is the accuracy of the obtained data.

Rules of thumb coming from our experiment . . .
– Measuring one method at a time does not change CPU utilization.

– At least 30 s are needed for (JIT) recompilation.

– If the reported time is 30 µs . . .

. . . the actual duration is between 20 µs and 40 µs

(durations of at least 100 µs are more “trustworthy”, though).

http://d3s.mff.cuni.cz/resources/icpe2016

Thank You!


