
Towards Performance and Scalability
Analysis of Distributed Memory Programs
on Large-Scale Clusters

1University of California, Santa Barbara,2Hewlett Packard Labs,
 and 3Hewlett Packard Enterprise

1

Motivation

– To improve completion time of many distributed memory programs
(HPC and Big Data) they are executed on large-scale clusters.

– However, in the initial implementation phase, programmers are
often bound to a limited size cluster

– Challenges: understand and assess scalability of the designed
applications

 In a larger cluster, each node processes a smaller data portion

 However, increased communication volume might be detrimental for
overall application performance

– Goal: Extrapolate performance of an application on a large
system using measurements and data analysis on a small cluster

2

Use Case: Graph500 Benchmark

Graph500 is a new benchmark for measuring computer’s performance in
memory retrieval (introduced in 2010):

– It performs breadth-first searches (BFS) in undirected graphs;

– Find all the vertices “one-hop” away, “two-hops” away, etc.

– Two distinct kernels:

 Kernel_1 (graph generator, arbitrarily large size): Kronecker Graph

 Kernel_2 performs BFS from a randomly chosen vertex (timed)

– The ranking is determined by:

 Problem Scale (defined by the Graph Size)

 Achieved throughput in TEPS (Traversed Edges Per Second).

– Our Testbed:

3

32 nodes 28cores/node 256GB DRAM/node

What Matters in Scalability Analysis?

4

Selected Algorithm

Implementation Code

Underlying System
Hardware and Software

 Build a scalability model for application Completion Time as a function of
 “important” factors
 Assess the effect of available bandwidth on the increased communication
 volume in the increased size cluster

Problem Definition

Scalability Analysis of Graph500

Strong scaling:

– Increased number of nodes in the cluster

– Fixed problem size

5

 Scale (s) denotes the size of the graph with 2𝑠 nodes and 16. 2𝑠 edges
 Graph of scale 27 has 134 Million vertices and 2.1 Billion edges;

 Graph of scale 28 has 268 Million vertices and 4.2 Billion edges; etc.

 Modeling: How to capture processing and communication time?

 Base Linear Regression Model

Simple Equation (p= number of processes/cores)

Completion Time = Processing Time + Communication Time

 = 𝑂(

1

𝑝
) + 𝑂(

1

𝑝
)

 = 𝑐1 ∗

1

𝑝
 + 𝑐2 ∗

1

𝑝

 Use properties of 2D-data partition algorithm (where, a number of

messages per process is O(p))

 We apply linear regression to find 𝑐1 and 𝑐2 coefficients

6

 Base Linear Regression Model

7

Scale = 27 Scale = 28

Prediction of completion times (in seconds) along with Table of errors and coefficients

 Scale =27 Scale =28

𝑹𝟐 error 0.95 0.97

MSE 0.04 0.19

𝒄𝟏 57.67 102.1

𝒄𝟐 3.8 10.3

 Good accuracy – the model is a good fit to observed data

 High 𝑹𝟐 (close to 1 is better)

 Low MSE (close to 0 is better)

 Processing time dominates Communication time in a small cluster

 𝒄𝟏/ 𝒄𝟐 decreases as data scale increases

Effect of Interconnect Bandwidth

– Communication becomes a dominant component with an increased number of nodes

–Challenges of bandwidth measurements: a variety of MPI collectives and calls

– Our approach: apply a bandwidth throttling tool InterSense [1]

–It uses a message padding to reduce the effective bandwidth

8

 Need to assess the increased bandwidth demands in the increased size
cluster.

[1] Q. Wang, L. Cherkasova, J. Li, and H. Volos. InterSense: Interconnect Performance Emulator for

Future Scale-out Distributed Memory Applications. MASCOTS, 2015

Summary

9

Effect Modeling Prediction
The error is under 2%

Conclusion

10

 Scalability analysis of a distributed memory program is challenging

Two critical factors: communication volume and the available
interconnect bandwidth

 We propose a novel approach for estimating the required interconnect
bandwidth in a larger cluster using the experiments in a
small/medium cluster performed with “bandwidth throttling tool”

Future Work:

 Build a general model as a function of data scale, number of nodes,
and available bandwidth

 Produce a performance curve for CT and TEPS metrics:
Add a “correction” factor reflecting the impact of available bandwidth on a completion
time

Estimate a cluster size, where a communication cost becomes a dominant
component and cripples scalability benefits

25

Thank you!

Questions?

