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INtroduction

« |n a physical datacenter app execution environment, we see:
Dedicated hardware, over-provisioned for peak app perf scaling
Manual resource mgmt for availability & capacity planning

« |n a virtualized datacenter app execution environment, we see:
Multiplexed scheduling of shared hardware resources

- Automatic resource mgmt for efficient app perf scaling
More complicated application performance management

« Datacenter resource schedulers, automatic application scaling,
workload telemetry data are important elements



Tutorial Outline

- Survey of datacenter resource schedulers
- Their role in application performance mgmt

« Achieving Service Level Objectives (SLOs) via
automatic application scaling

o Analytics pipelines for workload telemetry data



Datacenter Resource Schedulers

« Many in active use

« E.g.: Mesos, Kubernetes, Borg, VMware DRS,
Openstack Nova, Microsoft SCVMM, Hadoop, etc.

« \What do they all do”
« Why are there so many?

« How are they used for app performance mgmt?



What do they all do”

- Environment: Datacenter resource schedulers run in frameworks with
- Encapsulation support: Virtual machines (VMs); Containers
* Infrastructure mgmt: Inventory; Permissions; Deployment; Migration
- Monitoring: Metrics; Alerts; Troubleshooting; Capacity planning

* Activity: Datacenter resource schedulers map workloads to resources
- Placement: Select target capacity for workloads
- Deployment: Orchestrate launching of workloads
- Remediation: Address workloads’ runtime issues



Why are there so many”

- Placement criteria vary: Datacenterresource schedulers may consider
- Constraints
eHard: e.g., hardware, availabllity, licenses, storage access
eSoft: e.g., network locality, cost
- Resources
e Available CPU, memory, I/O bandwidth, storage space, power
- Policies
e Performance guarantees
e Efficiency: static versus dynamic partitioning
e Fairness: resolution of contention




Why so many”? continued

- Target apps vary: Datacenter resource schedulers may target
- Scale-up applications

eExamples: Exchange, Oracle, SQL server
- Scale-out applications

e Example: Web service stacks like Apache/JBoss/MySQL

- Scale-out applications w/specialized job management
e Examples: Hadoop, Spark, Jenkins

- Operating levels vary: Datacenter resource schedulers may operate

e At different time scales, on different entities, at different
infrastructure granularity



Datacenter Resource Schedulers Levels

Manage application jobs; map application
jobs to platform tasks

Broker the infrastructure scheduling of tasks,

orchestrate deployment, provide app features
such as service discovery & replication

Place tasks on infrastructure & perform on-
going cross-host coarse-grained scheduling

Perform on-going host-level fine-grained
task scheduling

Application Framework
Scheduler

Platform Scheduler

Infrastructure Scheduler

Host Scheduler



Datacenter Resource Schedulers Examples

Application Framework

Hadoop, Spark, Jenkins

Scheduler
Mesos, Kubernetes Platform Scheduler
DRS. SCVMM. Nova Infrastructure Scheduler

Host Scheduler
ESX, Xen, KVM, Hyper-V,

Linux+Docker



How are scheduler levels used for
app perf mgmt?

o Hierarchy allows separation of concerns suited to the
application & operating environment

e \irtualized datacenter may not include all levels

o Higher levels depend on the capabilities of lower
levels to efficiently achieve app pert SLOs

« We examine typical level capabilities from lowest up

« We consider examples at each level & pros/cons of
iIncluding that level in app perf mgmt stack



Virtualized Datacenter
Host Resource Schedulers

o Key attributes

e Resources managed
« Controls provided

« Encapsulation supported
 |solation characteristics
« Runtime overhead

e Deployment model at scale



Host Resource Scheduler
Example: VMware ESX hypervisor

* Resources managed, controls provided
 CPU & Memory: reservations, limits, shares
« CPU work conserving, Memory partially WC —_—

» Power: performance/power related policies
* Network & Storage bandwidth: reservations, limits

* Encapsulation supported: VMs

e |solation: strong; reservation, limit controls; no guest OS sharing
* Runtime overhead: fair; sufficient for production app usage

* Deployment model at scale: clone from VM template

» Other hypervisors: Xen (AWS), KVM (GCE), Hyper-V (Azure)



Host Resource Scheduler
Example: Linux+Docker

App 3
« Resources managed, controls provided Bins/Libs

« CPU: limits, shares [work-conserving] Docker Engine
* Memory: limits [not work-conserving] Operating System
» Network & Storage bandwidth: limits nirasictre

OB S

* Encapsulation supported: containers

* |solation: fair; partitioning via cgroups, namespaces, UFS
* Runtime overhead: low; workloads share guest OS kernel
* Deployment model at scale: run dockerfile to make image




Host Resource Scheduler
App Perf Mgmt Trade-offs

* More resource controls for VMs than containers, higher consolidation
* VMs provide better isolation than containers
* Legacy applications run as-is

« Containers avoid overhead of separate OS instance per encapsulation

« Containers have a simpler and faster deployment model than VMs
» Applications need to be developed or adapted for containerization

* Hybrid (containers in VMs) can be used to get benetits of both

A Coming Together
~os | os | os |
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Virtualized Datacenter
Infrastructure Schedulers

e Key capabilities
e Select host & datastore from cluster to run encapsulated tasks
e (Considerresource availability and a wide variety of constraints
e Perform ongoing coarse-grained infrastructure scheduling
« May support resource controls for pert, fairness, etficiency

« May migrate encapsulated tasks to satisfy resource needs



Infrastructure Scheduler Example:
VMware DRS & Storage DRS

» Resources managed, controls provided: same as ESX Hypervisor
« CPU, Memory, Power, Network, Storage

» Hard & Soft Constraints respected

* VM/host compatibility (cpu features, storage access, etc),
availability, VM/NVM,VM/Host, VMDK/VMDK affinity/anti-affinity

e Goal

« Satisty constraints and balance normalized entitlement for
headroom benefit subject to migration cost



Infrastructure Scheduler Example:
Openstack Nova Filter Scheduler

* Resources managed

» Weights consider available RAM, free disk space, |OPS,
running VMs count, and optionally utilization

» Hard & Soft Constraints respected

« VM/host compatibility (cpu features, storage access, etc),
availability, affinity/anti-affinity

o (Goal: Satisfy constraints and choose host w/best weight score
« No migrate for remediation; admin can request re-placement
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Infrastructure Scheduler
App Perf Mgmt Pros/Cons

e Pros
o Efficient sharing of heterogeneous infrastructure by heterogeneous apps

« Can use live migrate for perf remediation or hw maintenance; avoids app
perf impact, good for scale-up apps

« Cons
e Supporting heterogeneity & high host efficiency limits cluster scalability
e Hybrid

« Use higher level scheduler to choose cluster, use infrastructure
scheduler to do placement & ongoing mgmt w/in cluster



Virtualized Datacenter
Platform Schedulers

« Key capabillities
« Match available resources to application frameworks’ tasks
« Handle task deployment orchestration & ongoing mgmt

« Encapsulate tasks & assign to available resources; Set up
communication channel btw encapsulated tasks

« Maintain desired number of healthy task instances; Provide
service discovery

« T[rack/arbitrate resource allocation across app frameworks



Platform Scheduler Example:
Mesos DCOS

* Resources managed & controls: same as Linux+Docker containers
« CPU, Memory, Network, Storage

* Handles common application orchestration

* Interoperates with & arbitrates btw many app frameworks

Native Long running Batch

Spark, MPI, App A App Recurring Jobs
Hadoop, Storm PP (ETL, backups)
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Platform Scheduler Example:
Google Kubernetes

* Resources managed & controls: same as Linux+Docker containers
» CPU, Memory, Network, Storage

» Schedules pods [colocated containers], provides replication count
controller, supports labeling and service discovery

Kubernetes Architecture




Platform Scheduler
App Perf Mgmt Pros/Cons

* Pros

» High scale managing homogeneous tasks & infrastructure

« At Twitter, Mesos manages 10s of thousands of hosts
« Cons

» Scale can sacrifice heterogeneity support & high consolidation
« Hybrid

*Add co-scheduler [e.g. Netflix Fenzo] to handle heterogeneity

& drive higher consolidation as per framework policy

 Layer platform over infrastructure scheduler to offload detailed
handling of heterogeneity & infrastructure runtime remediation



Virtualized Datacenter
Application Framework Schedulers

o Key capabilities
« Provide job queuing & prioritization

« Break jobs into tasks based on app attributes, e.g.,
parallel/serial operations & data locality

o Launchtask w/appropriate sequencing; handle task failure

e Report job status & results to user



App Framework Scheduler Example:
Hadoop YARN

e Resource management characteristics

« Admits jobs based on platform resource availability,
gueueing jobs pending admission

e Supports policies that can give differentiated
treatment btw users or btw batch & interactive jobs




Application Framework Scheduler
App Pert Mgmt Pros/Cons

e Pros
« Handles app-specitic aspects of scheduling

e Cons

o Operational model of infrastructure ownership can result in low
utilization w/o sharing & unexpected behavior w/sharing

e Hybrid

o Layer over platform scheduler for sharing across apps, expose
impact of sharing to application framework [e.g., vHadoop]



Tutorial Outline

Survey of datacenter resource schedulers

- Achieving Service Level Objectives (SLOs) via
automatic application scaling

Analytics pipelines for workload telemetry data



Achieving service level objectives (SLOs)
Why is it so hard — distributed application architecture
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Wikipedia:
In software engineering,
multitier architecture

(often referred to as n-tier
architecture) is a client-
server architecture in which

presentation,
application processing,

and data management
functions are physically

separated.

Presentation tier

The top-most level of the application is the
user interface. The main function of the
interface is to translate tasks and results to
something the user can understand.

Logic tier

This layer coordinates the application,
processes commands, makes logical
decisions and evaluations, and performs

calculations. It also moves and processes
data between the two surrounding layers.

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the logic
tier for processing, and then eventually
back to the user.
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Achieving service level objectives (SLOs)
Why is it so hard — complexity of operating conditions

End-to-end application performance depends on access to many
heterogeneous resources

: CPU, memory, cache, network, storage, flash
: threads, connection pool, locks
Dynamic and non-uniform hosting conditions
« On-premises, cloud, hybrid
* Physical, virtual, containers
Time-varying application behavior
* Frequent software updates
« Seasonal or bursty workload demands
Performance interference due to resource sharing
: CPU/memory overcommitment

. processor cache, memory bandwidth



How is service level assurance done today?
An open loop system (human closes the loop)

instrument performance

& collect monitoring data & logs
& logging

managed
application

profiling,

analytics,
visualization

infrastructure
(physical, virtual,
containers)

topology,
migrate, charts,
restart, dashboards,
reconfig, alerts

scale



What kind of performance data are collected?

Infrastructure-level metrics
System-level stats collected by the host/guest OS or hypervisor

CPU, memory, cache, disk, network, interrupt
~100s-1000s metrics per host; ~10s-100s metrics per VM/container
Widely available from most OS/hypervisors/platforms

Available at a time scale of millisecondsto seconds

Application-level metrics
End-user experience (e.g., request response times)
Workload characteristics (e.g., request mix/rate, throughput)
Transaction tracing through application components
Need agent deployment, or special instrumentation

Often available at a time scale of seconds to minutes



What happens in a service level violation?
[ og analysis

e Requires expert knowledge of the target application

* For modern, distributed, complex applications
* Logfiles are distributed and need to be aggregated for analysis
* Hard to know which log files to look at - finding a needle in a haystack
* Logs may not contain the necessary information
 Performance concerns cause lower log levels (e.g., info) to be used in production
* Often requires re-production of the problem with higherlog levels

 No information oninfrastructure or third-party dependencies



What happens in a service level violation?
Performance charts and cook book

Requires domain expertise and deep understanding of application behavior
Best practice cook books cannot be used for problems not seen before

Human-driven and reactive in nature
 Rely onend user to report a problem first

* Time consumingand error-prone

Not scalable to large infrastructure with many (evolving) applications



Application service level assurance
Necessary features

* Proactive: identify a problem before it impacts end users and business
outcomes

* Data-driven: reduce dependency on human expertise and domain knowledge

* Automation: reduce time-to-resolution and increases scalability

» Suitable for resolving service level violations due to resource bottlenecks or
configuration errors that can be fixed programmatically (using APIs)

* In this talk: focus on automatic application scaling
* Horizontal scaling

* Vertical scaling



What’s Horizontal scaling?

* Scale out/in: Adding/removing instances in a specific tier
* Adjusting concurrency level in the application

e Usually requires a load balancer

Load
Balancer

Load
Balancer




What’s vertical scaling?

* Scale up/down: Adding/removing capacity in a single instance
e Adjusting the productivity level of individual resources

e Can adjust different resources separately

”~
™~




Horizontal vs. vertical scaling

Horizontal Scaling Vertical Scaling

Requires scalable application architecture No special architecture requirement

Fixed resource capacity profile Flexible resource capacity profile

Slower execution Faster execution

More suitable for stateless services Suits both stateless and stateful services
No restart of application services May require a restart of the application
No need for special platform support Requires support from the platform

Not limited by physical host size Limited by capacity of physical hosts



Horizontal scaling widely adopted in industry

- Available from all major public cloud providers
— Amazon AWS, Microsoft Azure, Google Cloud Platform, Rackspace

- Schedule-based or trigger-based
- Spin up new instances when threshold is violated
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- Challenges
— How to handle different application services?
— How to determine the right and right threshold value?



End-to-End Latency (ms)

Learning-based auto scaling
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* P. Padala et al. “Scaling of cloud applications using machine learning.” VMware Technical Journal, Summer 2014.

Use reinforcement learning to capture application’s scaling behavior and inform
future actions

Use heuristics to seed the learning process

User only needs to provide end-to-end latency goal

Handles multiple tiers automatically
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Challenges in vertical scaling
The semantic gap

End user
experience

App-level
monitoring

infrastructure

(physical, virtual, containers) Infrastructure
monitoring

How to translate app-level performancegoals to resource-level requirements?



Use models to capture app-resource mapping
Which metrics go into the model?

Depends on the resource-level control knobs available from the platform

* On VMware ESX, for shared CPU, memory, disk |/O*, network |/O%, :
* Reservation (R)* — minimum guaranteed amount of resources
 Limit (L) — upper bound on resource consumption (non-work-conserving)

* Shares (S) —relative priority duringresource contention
* For CPU/memory: Configured size (C) — controllable by the user

* For CPU/memory: Demand (D) — estimated by the hypervisor (not directly controllable)

—

> L

<— Actual-allocation =
f(R, L, S, D, Cap)

R /

Available capacity

VM configured size (C) _

~——

* A. Gulati et al. “VMware distributed resource management: Design, implementation, and lessons learned.” VMware
Technical Journal, April 2012..



Use models to capture app-resource mapping
What kind of model should we use?

* White-box vs. black-box empirical models
* Linear vs. nonlinear models

* Offline vs. online models



White-box performance models

Pros
* Solid theoretical foundation
* Application-aware, easier to interpret

* Closed-form solutionin some special cases

Cons
* Detailed knowledge of system, application, workload, deployment
* More often used for aggregate behavior or offline analysis

* Harder to automate, scale, or adapt



Black-box empirical models

Pros
* Generic: No a priori assumptions
°* Tools: Many learning algorithms available
°* Automation: Easier to do partially or fully

* Scalable: Easier to codify analysis in algorithms

Challenges
* Efficiency: Real-time data processing and analytics
* Accuracy: Reduces false positives and false-negatives

* Adaptivity: Handles changing workloads and environments



Linear vs. nonlinear models

* Nonlinear models have better accuracy than linear regression model
* Linear regression model has the least computation cost

* Boosting algorithm has the best accuracy and highest cost
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* P. Xiong et al. “‘vPerfGuard: An automated model-driven framework for application performance diagnosis in

consolidated cloud environments.” ICPE 2013.

(f) Two phase algorithm overhead



Offline vs. online models

Offline modeling
* More appropriate for nonlinear models
* More suitable for capacity planningand initial sizing

* Cannot adapt to runtime changes in app, workload, or system

Online modeling
* Shouldbe cheap to compute and update
* Linear models more appropriate
* (Can adapt to changes in application, workload, and system

* Suitable for runtime adaptation and reconfiguration



Automatic vertical scaling with control & optimization
For individual applications

VApp SO TS .
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Automatic vertical scaling — case studies

* Casel: VM CPU and memory scaling for MongoDB servers
* Case 2: CPU scaling for Zimbra Mail Transfer Agent (MTA)

* Case 3: Proactive memory scaling for Zimbra Mailbox Server



Case study |
CPU & memory scaling for MongoDB

* Application
* MongoDB — distributed data processing application with sharding

* Rain —workload generation tool to generate dynamic workload

e Workload

.
« Number of clients Configsvr |
* Read/write mix
' s

* Evaluation questions

e Can the vApp Manager meet

mongoDB

individual application SLO?



Performance model builder for a VApp

Maps VM-level resource allocations to app-level performance
e Captures multipletiers and multiple resource types

 Choosea linear low-order model (easy to compute)

 Workload indirectly captured in model parameters

 Model parameters updated online in each interval (tracks nonlinearity)

‘ workload A

measured
performance p(t)

VM CPU usage uk (t)

VM memory usage UK _(t)

Y Y



Use optimization to handle design tradeoff

 An example cost function

o~ [\ T

Ju(z+1) = (p(z +1) - pgo ) 4 B ulz+ D) -u()|]
\J ~~—

performance cost control cost

Tradeoff between
performance and stability

* Solve for optimal resource allocations

M*(t +1) = g(p(t)apSLObu(t)v/la/)))




Normalized Response Time

Result: Meeting mean response time target

« Under-provisioned initial settings: R =0, Limit = 512 (MHz, MB)
» Over-provisioned initial settings: R = 0, L = unlimited (cpu, mem)

Mean response time ( target 300ms)
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Resource utilization (under-

» Target response time = 300 ms
* Initial setting R =0, L =512 MHz/MB

CPU utilization
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* L. Lu, et al., “Application-Driven dynamic vertical scaling of virtual machines in resource pools.” NOMS 2014..



Case study 2
CPU scaling for Zimbra Mail Transfer Agent (MTA)

* Application: Open-source Zimbra collaboration software
 Workload: ZimbraPerf email workload generator
« Scaling parameter: CPU configuration (#vCPUs) for MTA VM

Frontend: Mailbox Server ackend: Mail Transfer Agent(MTA)

Outgoing Mail
Send email

SOAP

Deliver

email Incoming Malil

OpenLDAP

<« - — — Async

«——— 3Sync



Scaling policies evaluated

 Model-based controller
= Control interval 20 seconds

= Estimation interval 5 minutes

» Trigger-based controller
= Thresholds

= Scale-up if utilization > 90%

= Scale-down if utilization <40%
= Control interval: 1 or 5 minutes
- Workload trace
One week from FIFA 98 Worldcup access logs

Scaled to 8 hours experiment duration



Performance evaluation result

150 | [ | Demand controller [JJij Utilization controller
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Time (in minutes)

Scaling Mean Number of Mean Max
Policy latency [s] | Reconfigurations | vCPUs | vCPUs

Model-based 20.48 13 1.4 2
Trigger-based 10.82 273 1.83 3
(1 min)
Trigger-based 25.97 72 1.46 3
(5 min)
Static allocation 1385 0 1 1

* Both scaling policies successfully avoid SLA violations
 Model-based policy is more efficient and requires less reconfigurations

* 8. Spinner et al. “Runtime vertical scaling of virtualized applications via online model estimation.” SASO 2014.



Case study 3

Proactive memory scaling for Zimbra Mailbox Server

e Application: Open-source Zimbra collaboration software

 Workload: ZimbraPerf email workload generator

Frontend: Mailbox Server Backend: Mail Transfer Agent (MTA)

Outgoing Mail
Send email

- - =

Incoming Malil

OpenLDAP

<« - — — Async

«——— 3Sync



Memory scaling parameters

Ballooning Hot-add
configured
%
limit | memory balloon :
configured T é new memory
available memory
initial memory
= Reclaim memory by = Add memory by
reducing limit increasing configured
= Limit < configured = No restart of VM required

= May require restart of
application



Case study 3

Proactive memory scaling for Zimbra Mailbox Server

Challenges

* Application memory management

= Optimal configuration depends on VM memory size (e.g., JIVM, MySQL)
* Application elasticity

= Restart of application may be required when app memory settings change
* Impact of reconfiguration

" May cause additional overheads

= Unreliableunder high memory pressure

Approach

* Proactive scaling of VM memory size
= Use loadforecasting to determine maximum required memory for the next day

= Schedule memoryreconfig. via hot-add during phases of low load

= Minimize impact of reconfiguration on application



Performance evaluation result

Reactive controller Proactive controller
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* Proactive memory scaling controller reduces application unavailability time
by over 80% compared to the reactive controller

* 8. Spinner et al. “Proactive Memory Scaling of Virtualized Applications.” [EEE CLOUD 2015.
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Tutorial Outline

e Survey of datacenter resource schedulers

« Achieving Service Level Objectives (SLOs) via
automatic application scaling

- Analytics pipelines for workload telemetry data



Analytics Pipelines for
VM/Workload Telemetry

Presented by Rean Griffith

Based on joint work with Dragos lonescu (intern/MIT)
and members of the Distributed Resource
Management (DRM) team at VMware



Outline

= Goals: sense-making at scale

= An interesting anomaly detection problem
= Conceptual Steps (4 Example Pipelines)

= Related Work

= Data Sources

* Pipeline Details and Results

= Conclusion



Goal: Do useful things with (lots of)
data

* Make use/sense of datacenter telemetry
= Understand VM-resource relationships

= Understand VM-VM relationships
* Understand VM-performance relationships

* Analyze non-trivial amounts of raw data (10’s — 100’s
of GBs per day) “quickly” (not real-time) in a scalable
way



Motivating Problem

= Anomaly detection in virtualized environments using
limited history



Typical Anomaly Detection Steps

= Step 1: Observe the normal behavior of something
long enough to construct a baseline

= Step 2: Compare future behavior to baseline and
highlight deviations

= Step 3 (optional): Explain deviations (root cause)

* Problems:

= Mis-labeled training data: How do you know you are
observing normal behavior?

= How long is long enough?
= What can you say while you are waiting?
= What does an explanation look like?



Insight: VM-Similarity Relationships
Can be Useful and Robust

= [ntuition: virtual machines running the same operating
system or performing the same role are more like

each other

= For example: a VM running apache on Linux is more
like another VM running apache on Linux than an VM

running mysql on Linux

= We can do similarity comparisons with smaller
amounts of data (history)!



Outline

= Goals: sense-making at scale

= An interesting anomaly detection problem
= Conceptual Steps (4 Example Pipelines)

= Related Work

= Data Sources

* Pipeline Details and Results

= Conclusion



Conceptual Pipeline
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Motivation (Use Cases): Exploiting
VM relationships

* Automatic assignment of Distributed Resource Scheduler
(DRS) affinity / anti-affinity rules based on VM workload
changes

* Automatic grouping of VMs based on their behavior
(metric patterns)

Host 1 Host 2

VM VM VM VM VM

VM VM VM VM VM

70




Motivation (Use Cases): Explaining
Performance

* Automatic detection and explanation of performance
problems or differences across deployments using

Conditional Probability Distributions
ﬁ AppX \

ﬁ AppX \ ﬁ AppX \
Key Performance Indicator Distribution for App X

(cpu usage, throughput, etc.)

Outliers
/ \
\

Interesting Interesting
performance performance 71




Outline

= Goals: sense-making at scale

= An interesting anomaly detection problem
= Conceptual Steps (4 Example Pipelines)

= Related Work

= Data Sources

* Pipeline Details and Results

= Conclusion



Related Work: Fingerprinting the
Datacenter

" Paper: Fingerprinting the Datacenter: Automated
Classification of Performance Crisis (Peter Bodik et al.,
EuroSys ‘10)

" Goal: rapid identification of performance crises in a
datacenter and rapid recovery from a crisis

* Uses a fingerprint to represent the state of the datacenter
(classification problem)
* The fingerprint is easy to compute (scales linearly with the

number of performance metrics considered not the number of
machines)

* The fingerprint captures the most relevant metrics that can be
used to describe or diagnose a crisis



Related Work: Using Correlated
Surprise to Infer Shared Influence

" Paper: Using Correlated Surprise to Infer Shared
Influence (Adam Oliner et al., DSN “10)

" Goal: design a method for identifying the sources of
problems in complex production systems based on
influence

" Influence: two component share an influence if the
exhibit surprising behavior around the same time

* This approach motivates the use of VM correlations in our
analysis pipeline



Related Work: Online detection of
Multi-Component Interactions

* Paper: Online detection of Multi-Component Interactions
in Production Systems (Adam Oliner et al., DSN ’11)

* Goal: online identification of sources of problems in
complex systems based on historical data

* The paper shows that understanding complex
relationships between heterogeneous components
reduces to studying the variance in a set of signals

* This approach motivates the use of VM metric variations
in our analysis pipeline



Related Work: Dominant Resource
Fairness

* Paper: Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types (Ali Ghodsi et al., NSDI ’11)

* Goal: fair resource allocation in a system containing
different resource types and different demands

" The paper focuses on fairness policies, but we can reuse
the notion of a dominant resource to group VMSs and get a
possible fingerprint (e.g. the dominant resource is the
resource a VM cares about the most)

* This approach motivates the use of dominant resource
patterns in our pipeline



Related Work: Carat: Collaborative
Detection of Energy Bugs

* Paper: Carat: Collaborative Detection of Energy Bugs (Adam
Oliner et al., carat.cs.berkeley.edu, SenSys ‘13)

" Goal: use the idea of an Application Community to do
collaborative detection of energy bugs for smart phones

= Application Community: collection of multiple instances of the
same application (or similar applications) running in different
environments

" Battery usage data is collected from the entire community and
used to identify possible energy hogs (applications or settings
that lead to a higher discharge rate) — P(drain rate = x | wireless
off, AppA running, ...)

* This approach motivates our use of Conditional Probability
Distributions to identify performance problems across
deployments




Outline
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Data Sources

= Data Collection Clusters

= AppRM (DRM Cluster) — smaller controlled environment (~10
VMs), research workloads - 2 small mongoDB clusters and
unrelated other workloads

= ViewPlanner (Perf Team Cluster) — medium size controlled
environments (100’s of VMs), controlled workload

= Nimbus — large number of VMs (~1000 VMs), heterogeneous
workloads



Pipeline Input

* Collected ~300 metrics per VM

* Includes CPU, Memory, Disk, Network statistics at the VMM,
hypervisor and Guest OS level. Also includes hypervisor
statistics, e.g., memory ballooning and hypervisor swap data

" On average ~100 metrics per VM were non-constant



Data Exploration and Preparation

= Algorithmic tools
= Metric correlations

= Percentile summarization

= K-Means clustering + Bayesian Information Criterion + Cluster
Stability Measures + Cluster Spread/Diffusion metrics

= |ogistic Regression (Classification)

* Principal Component Analysis (PCA)

* Multi-modal Distribution Analysis (Silverman’s test)
* Entropy and Mutual Information computations



Pipeline A— VM Correlations

* Use VM correlations for a rough approximation of VM
relationships

" Based on the results, assess whether it is worth applying
more advanced statistical clustering techniques

Cluster
strongly

Pairwise VM
Raw Data metric

: correlated
correlations

VMs
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Pipeline A Results — Correlations across
VM metrics

" Choose a set of n relevant metrics (via correlation
coefficient thresholds) for VM, and VM,

" Build an NxN correlation matrix M, such that M;; is the
correlation between the values of the it" metric for VM,
and the j"" metric for VM, (using a hour’s worth of raw
data)

" Look for patterns



Pipeline A Results — Correlations across
VM metrics (AppRM)

100 1.0 19 ! ! ! ! 1.0
: Tl : : N — ) -
1 . .

0.0 ! 0.0

1.0 -1.0

2 MongoDB VMs 1 MongoDB VM and
1 unrelated testserver VM
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Pipeline A Results — From
Correlations to Clustering

" Given a pair of VMs, count for how many metrics the
correlation coefficient is above a given threshold (0.4)

" Normalize using the highest count

* Step 1: Naive clustering based on normalized count:
* Count close to 1: high fraction of correlated metrics
* Count close to O: low fraction of correlated metrics

= Step 2: Cluster based on K-Means if Step 1 looks
promising
* Each value used as a coordinate component for a set of

metrics <mq, m,, ..., my> is its k-percentile value (e.g.,
median/50" percentile) over a 1 hr period



Pipeline A Results — From
Correlations to Clustering

AppRM — PCA & K-Means Clustering
3 T T T T

ACluster - Correlation Heatmap

14
i i shard ¢
. — T — —_ - 2t HA - H#7 o
. I T B - 1+ workloads.sets o Wozgéﬁa ds -
U I — - wm T — 106 (#10 - #13) testserver
E j | ; : los %[ a0 ® (#8)
= b S e
| - % 0.4 1
T N . rain
N lo2  -2f #2 - #3 °
N T T T T
I TR . mongos
OO. ﬁ A é\slM Inde;i(3 1i0 12 H N #0 i #1 °
B similar Unrelated [ ) -4 - - 5 5

VM 0 - 7: MongoDB cluster + rain load generators

VM 8: unrelated test server

VM 9: workload A
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Pipeline B - Background

= K-means clustering
* Unsupervised Machine Learning technique to identify structure in a
dataset
* Used to identify the VMs that are “similar” (group together)

= Logistic regression
* C(Classification technique used to identify the features that describe a
labeled set of datapoints

* Used to describe the structure (statistical clusters) from K-Means
Clustering algorithm by identifying the relevant features for each

cluster

* Principal Component Analysis (PCA)

* Data summarization technique used to explain the variance of a set of
signals using the variance of a subset of them

* Can be used to identify the key (principal) components and eliminate
redundant features



Pipeline B — Patterns of Metric
Variations

Show good results using the raw data

Extract

VM Grouping Signature

(K — Means
Clustering)

(Logistic
Regression
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Pipeline B — Fingerprint Example

" One-vs-all Logistic Regression is used to identify the most
important metrics for each cluster

" The resulting fingerprint is a weighted expression of
common metrics of importance

Metric 1 Metric 2
weight = 0.1
weight = 0.2
weight = 0.5
weight = 0.3

Metric 4 Metric 3




Pipeline B — ViewPlanner Setup

Controller Appliance

Web
Browser

Physical Machine

[

VP client
agent

J

\4

VMware
plugin

Client VMs

<€

[ View Planner

harness

J

!

[ MySQL

database

J

Remote Protocol
(PColP)

>

Infrastructure
VMs

Various Infrastructure

VMs

[ View Planner

VP desktop
agent
[ Apps

J

workload

Desktop VMs
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Pipeline B Results — ViewPlanner
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Pipeline B Results — Choosing the
number of clusters

ViewPlanner — Identifying the right number of clusters
(Bayesian Information Criterion)
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Pipeline B Results — ViewPlanner

1.5

1.0
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Pipeline B Results — Extracting the
FiIngerprint

ViewPlanner Desktop VMs (Green) Cluster Signature
Load Receivers

Metric Coefficient
rescpu.runpkl.latest 1.20
cpu.system.summation 1.10
mem.usage.none 0.89
net.broadcastRx 0.78

cpu.usagemhz.none 0.69



Pipeline B Results — ViewPlanner
(idle state)

* We can still identify the VMs even though they are idle

PCA K-Means - 5 Clusters

op  *W® S
Load Receivers / ° Load Generators
1 (Win-XP) (Win 7)

PCA y coordinate

Infrastructure
~4F VMs <

PCA x coordinate



Pipeline B Results— Fingerprint Accuracy (ViewPlanner)

= Use One-VS-All Logistic regression to measure the information
loss due to PCA by comparing precision, recall, f-measure values

Raw Data

1.0

0.8

0.6

0.4

0.2

0'9:0 (7)

Cl(21) C2(63) C3 (84-)
mm Recall

mmm Precision

PCA Data

1.0

0.8

0.6

0.4

0.2

0'%0 (7)

Cl(21) C2(63) C3 (84-)
— F-measure

. t
Precision =
tp+fp
t
Recall = —
tptfn

precision-recall

F-measure =2 —
precision+recall

tp = true positives
fp = false positives
tn = true negatives

fn = false negatives
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Pipeline C—Dominant Resources

" Given a time interval, compute for each VM the
percentage of CPU/Memory usage with respect to
cluster’s capacity

* The resource for which the VM requests the highest
fraction of cluster resources is its dominant resource

" Fingerprint Example

VM Memory
CPU |
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Pipeline C Results — Dominant
Resources (Nimbus)

VM Conni

200

100 p

Memaory(green) VS CPU(vellow)
Dominant YMs

VM

VM

VM

Epochs (hours)

0 1 2 3 4 ) 6
I\lvmnlyl ‘ ‘ ‘ ‘ ‘ | \ 40%
Cpu
CPU Hungry

e N :::
CpPu

Memory Hungry

Cpu

Mixed
Nimbus (*1000 ¥Ms) - 3 commaon patterns
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Pipeline D — Conditional Probability
Distributions from Multi-modal data

Bimodal Distribution

o | [ F [ ]
CPU Usage




Pipeline D — Conditional Probability

Distributions from M

Jlti-modal data

* Two challenges (we want P(X|Y,, ..., Y,))
* Q1: How to find candidate interesting variables (X’s)?
* Q2: How to determine which variables to condition on (Y;'s)?

" Two possible strategies

* Al: Multi-modal metrics may be interesting (use Silvermans

Test)

* A2: Use Mutual Information to exclude independent variables



Pipeline D — Conditional Probability
Distributions from Multi-modal data
* Using data from other View Planner experiments we find

example multi-modal metrics (using Silvermans test and a
0.1 significance level)

Metric Name Number of modes P-value
cpu.idle.summation 2 0.33
cpu.latency.average 3 0.26
cpu.ready.summation 3 0.35
cpu.run.summation 3 0.20
cpu.used.summation 3 0.54
cpu.usage.average 3 0.95
cpu.usagemhz.average 3 0.96
cpu.wait.summation 2 0.30
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Pipeline D — Conditional Probability
Distributions from Multi-modal data

" cpu.usage.average distrbution

- cpu.usage.average. distribution (size: 84)

18 20
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Pipeline D — Conditional Probability
Distributions from Multi-modal data

* |dentify candidate metrics to condition on via Mutual
Information

Candidate Metric
cpu.ready.summation

cpu.latency.average

* We identify spread metrics from the normalized delta of
expected values across View Desktop clusters (m,,, = max
median value over split cluster of View Desktops)

|E|m|A]—E|m|B]| Metric Name Elml|A] Elm|B]
0453 cpu.ready.summation 0.291 0.744
0.443 cpu.latency.average 0.247 0.690
0.386 rescpu.actpk1.latest 0.324 0.711
0.375 rescpu.runav | .latest 0.335 0.710
0.372 cpu.usagemhz.average | 0.312 0.684
0.372 cpu.usage.average 0.312 0.684
0.366 rescpu.actpkS.latest 0.409 0.775
0.360 rescpu.actav I .latest 0.196 0.556
0.356 cpu.demand.average 0.201 0.558 103
0.311 rescpu.actavs.latest 0.257 0.568



Pipeline D — Conditional Probability
Distributions from Multi-modal data

" Removing Spread Metrics S(m) with deltas > theta (0.2)
cause clusters to collapse (explaining the original diffusion)

| E|m|red cluster| — E[m/|blue cluster||

S(m) = > ]

I”HNIJ'

PCA K-Means - 4 Clusters, Epoch 4, Percertile 50 ) PCA K-Means - 3 Clusters, Epoch 4, Percentie 50
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Conclusion and Future Work

v/ We are able to automatically identify similar VMs based
on workloads/telemetry

v/ We use classification techniques to fingerprint each
group of similar VMs

v/ Within a group of similar VMs we have heuristics for
finding potentially interesting metrics to build conditional
probability models on to explain diffusion or split clusters

v’ All of our techniques build on statistical or signal
processing algorithms to create our eventual pipline



summary

o Virtualized datacenters present the opportunity for
flexible & efficient application performance
management

o Appropriate resource scheduling, automatic scaling
to maintain SLOs w/o over-provisioning, & relevant
telemetry data are key to achieving flexibility &
efficiency.
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(Some) Related Work

* Fingerprinting the Datacenter: Automated Classification of
Performance Crisis (Peter Bodik et al., EuroSys ‘10)

= Using Correlated Surprise to Infer Shared Influence (Adam
Oliner et al., DSN ’10)

* Online detection of Multi-Component Interactions in
Production Systems (Adam Oliner et al., DSN "11)

* Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types (Ali Ghodsi et al., NSDI’11)

= Carat: Collaborative Detection of Energy Bugs (Adam Oliner
et al., carat.cs.berkeley.edu, SenSys ‘13)



(Some) Related Work

* VM and Workload Fingerprinting for Software Defined
Datacenters (Dragos lonescu, Masters Thesis MIT, 2012)




