
Parallel Graph Processing: Prejudice
and State of the Art

 1Stanford University, 2Hewlett Packard Labs, 3Hewlett Packard Enterprise

1

Motivation

Large Graph Processing is becoming increasingly important for
solving multiple problems:
Social networks

Web connectivity

Computational Biology

Traditional algorithms, software, and hardware are not always
effective for solving large graph problems

Analyze performance characteristics of graph applications
System bottleneck

Memory subsystem usage

2

Graph algorithms stereotypes

 Poor Scalability?

 Poor locality?

 Memory bounded: BW- or Latency-bound?

3

Our Profiling Approach

Hardware Performance Counters
• Core HW counters: Cache hit ratios, Stalls, etc.

• Uncore HW counters: Memory controller memory references,
LLC hit ratio, etc

PAPI
• Provides an interface for using the HW counters in the code.

4

Galois

• A system for automated parallelization of irregular
algorithms.

• Allows the programmer to write serial C++ or Java
code while still getting the performance of parallel
execution

• Very efficient for large graph processing and diverse
graph analytics.

• Because of its high efficiency, the main bottlenecks
are system related and not code related.

5

Testbed, Graph Applications, Datasets

Used Intel Xeon E5-2660 V2 with Ivy Bridge processor.

–10 cores per socket , frequency of 2.2 GHz, 25 MB of last level cache

Graph Apps

–PageRank (PR)

–Breadth First Search (BFS)

–Betweenness Centrality (BC)

–Connected Components (CC)

–Approximate Diameter (DIA)

Datasets

–Twitter - Twitter Follower Graph (61.5 M vertices, 1,458 M edges)

–PLD - Web Hyperlink Graph (39 M vertices, 623 M edges)

6

• pChase benchmark

• A well-known pointer chasing benchmark for

measuring effective memory latency and bandwidth

• Configurable number of concurrent chains of pointers

to fill any desired size of memory

• Each sequence of pointer addresses is pseudo-

random, designed to defeat hardware prefetching

while limiting TLB misses.

• This access pattern is more representative for graph

algorithms than the STREAM sequential access

pattern

7

General system characterization

8

• Latency

• For 1-2 cores: growing only once core reaches 10 outstanding

memory references. Fill Buffers are a bottleneck

• For 4-10 cores: Memory controller is an additional bottleneck

General system characterization

9

• Memory Bandwidth
• Memory BW scales well up to 4 cores – Fill Buffers are a

bottleneck

• Diminished benefits after that – Memory controller is an additional

bottleneck

HW prefetchers disabled: HW prefetchers enabled:

General system characterization

10

 Memory BW Scaling

Findings

• Good memory BW scaling with increased number of cores

• Not memory BW bounded

11

 Poor Scalability?

Findings

• Application speedup and scalability are highly correlated with

Memory BW

12

 Fill Buffers Occupancy and IPC

Findings

Application Average FB

occupancy

PageRank 4.7-5.5

BFS 3.3-3.5

Betweenness

Centrality

1.75-2.16

Connected

Components

1.37-1.55

Diameter 0.16-1

Application IPC

PageRank 0.5-0.6

BFS 0.5-0.8

Betweenness

Centrality

0.6-0.9

Connected

Components

0.7-1

Diameter 0.7-1.2

• Fill Buffers are not a bottleneck • IPC numbers are low

13

 Then what are the system bottlenecks?

Findings

• Memory latency bound!

14

 Poor locality?

Findings

Application L1 Hit

Rates

LLC Hit

Rates

PageRank 74-77% 35-39%

BFS 89-90% 34-37%

Betweenness

Centrality

93-98% 30%-33%

Connected

Components

95-96% 29%-31%

Diameter 96-98% 10%-22%

• Significant cache hit rates

Graph Algorithms - Conclusions

• Good Scalability

• Significant locality

• Memory BW is not fully utilized

• FB are not fully utilized

• Mostly memory latency bounded

25

25

Thank you!

Questions?

