
Parallel Graph Processing: Prejudice
and State of the Art

 1Stanford University, 2Hewlett Packard Labs, 3Hewlett Packard Enterprise

1

Motivation

Large Graph Processing is becoming increasingly important for
solving multiple problems:
Social networks

Web connectivity

Computational Biology

Traditional algorithms, software, and hardware are not always
effective for solving large graph problems

Analyze performance characteristics of graph applications
System bottleneck

Memory subsystem usage

2

Graph algorithms stereotypes

 Poor Scalability?

 Poor locality?

 Memory bounded: BW- or Latency-bound?

3

Our Profiling Approach

Hardware Performance Counters
• Core HW counters: Cache hit ratios, Stalls, etc.

• Uncore HW counters: Memory controller memory references,
LLC hit ratio, etc

PAPI
• Provides an interface for using the HW counters in the code.

4

Galois

• A system for automated parallelization of irregular
algorithms.

• Allows the programmer to write serial C++ or Java
code while still getting the performance of parallel
execution

• Very efficient for large graph processing and diverse
graph analytics.

• Because of its high efficiency, the main bottlenecks
are system related and not code related.

5

Testbed, Graph Applications, Datasets

Used Intel Xeon E5-2660 V2 with Ivy Bridge processor.

–10 cores per socket , frequency of 2.2 GHz, 25 MB of last level cache

Graph Apps

–PageRank (PR)

–Breadth First Search (BFS)

–Betweenness Centrality (BC)

–Connected Components (CC)

–Approximate Diameter (DIA)

Datasets

–Twitter - Twitter Follower Graph (61.5 M vertices, 1,458 M edges)

–PLD - Web Hyperlink Graph (39 M vertices, 623 M edges)

6

• pChase benchmark

• A well-known pointer chasing benchmark for

measuring effective memory latency and bandwidth

• Configurable number of concurrent chains of pointers

to fill any desired size of memory

• Each sequence of pointer addresses is pseudo-

random, designed to defeat hardware prefetching

while limiting TLB misses.

• This access pattern is more representative for graph

algorithms than the STREAM sequential access

pattern

7

General system characterization

8

• Latency

• For 1-2 cores: growing only once core reaches 10 outstanding

memory references. Fill Buffers are a bottleneck

• For 4-10 cores: Memory controller is an additional bottleneck

General system characterization

9

• Memory Bandwidth
• Memory BW scales well up to 4 cores – Fill Buffers are a

bottleneck

• Diminished benefits after that – Memory controller is an additional

bottleneck

HW prefetchers disabled: HW prefetchers enabled:

General system characterization

10

 Memory BW Scaling

Findings

• Good memory BW scaling with increased number of cores

• Not memory BW bounded

11

 Poor Scalability?

Findings

• Application speedup and scalability are highly correlated with

Memory BW

12

 Fill Buffers Occupancy and IPC

Findings

Application Average FB

occupancy

PageRank 4.7-5.5

BFS 3.3-3.5

Betweenness

Centrality

1.75-2.16

Connected

Components

1.37-1.55

Diameter 0.16-1

Application IPC

PageRank 0.5-0.6

BFS 0.5-0.8

Betweenness

Centrality

0.6-0.9

Connected

Components

0.7-1

Diameter 0.7-1.2

• Fill Buffers are not a bottleneck • IPC numbers are low

13

 Then what are the system bottlenecks?

Findings

• Memory latency bound!

14

 Poor locality?

Findings

Application L1 Hit

Rates

LLC Hit

Rates

PageRank 74-77% 35-39%

BFS 89-90% 34-37%

Betweenness

Centrality

93-98% 30%-33%

Connected

Components

95-96% 29%-31%

Diameter 96-98% 10%-22%

• Significant cache hit rates

Graph Algorithms - Conclusions

• Good Scalability

• Significant locality

• Memory BW is not fully utilized

• FB are not fully utilized

• Mostly memory latency bounded

25

25

Thank you!

Questions?

