

Stanford University

Parallel Graph Processing: Prejudice and State of the Art

Assaf Eisenman^{1,2}, Ludmila Cherkasova², Guilherme Magalhaes³, Qiong Cai², Paolo Faraboschi², Sachin Katti¹

¹Stanford University, ²Hewlett Packard Labs, ³Hewlett Packard Enterprise

Motivation

- Large Graph Processing is becoming increasingly important for solving multiple problems:
 - Social networks
 - Web connectivity
 - Computational Biology
- Traditional algorithms, software, and hardware are not always effective for solving large graph problems
- Analyze performance characteristics of graph applications
 - System bottleneck
 - Memory subsystem usage

Graph algorithms stereotypes

- Poor Scalability?
- Poor locality?
- Memory bounded: BW- or Latency-bound?

Our Profiling Approach

Hardware Performance Counters

- Core HW counters: Cache hit ratios, Stalls, etc.
- Uncore HW counters: Memory controller memory references, LLC hit ratio, etc

PAPI

• Provides an interface for using the HW counters in the code.

Galois

- A system for automated parallelization of irregular algorithms.
- Allows the programmer to write serial C++ or Java code while still getting the performance of parallel execution
- Very efficient for large graph processing and diverse graph analytics.
- Because of its high efficiency, the main bottlenecks are system related and not code related.

Testbed, Graph Applications, Datasets

- Used Intel Xeon E5-2660 V2 with Ivy Bridge processor.
 - -10 cores per socket, frequency of 2.2 GHz, 25 MB of last level cache
- Graph Apps
 - -PageRank (PR)
 - -Breadth First Search (BFS)
 - -Betweenness Centrality (BC)
 - -Connected Components (CC)
 - -Approximate Diameter (DIA)
- Datasets
 - -Twitter Twitter Follower Graph (61.5 M vertices, 1,458 M edges)
 - -PLD Web Hyperlink Graph (39 M vertices, 623 M edges)

General system characterization

- pChase benchmark
 - A well-known pointer chasing benchmark for measuring effective memory latency and bandwidth
 - Configurable number of concurrent chains of pointers to fill any desired size of memory
 - Each sequence of pointer addresses is pseudorandom, designed to defeat hardware prefetching while limiting TLB misses.
 - This access pattern is more representative for graph algorithms than the STREAM sequential access pattern

General system characterization

- Latency
 - For 1-2 cores: growing only once core reaches 10 outstanding memory references. *Fill Buffers are a bottleneck*
 - For 4-10 cores: *Memory controller is an additional bottleneck*

General system characterization

- Memory Bandwidth
 - Memory BW scales well up to 4 cores Fill Buffers are a bottleneck
 - Diminished benefits after that Memory controller is an additional bottleneck

HW prefetchers enabled:

Hewlett Packard Enterprise

□ Memory BW Scaling

- Good memory BW scaling with increased number of cores
- Not memory BW bounded

Hewlett Packard Enterprise

FindingsPoor Scalability?

 Application speedup and scalability are highly correlated with Memory BW

□ Fill Buffers Occupancy and IPC

Application	Average FB occupancy
PageRank	4.7-5.5
BFS	3.3-3.5
Betweenness Centrality	1.75-2.16
Connected Components	1.37-1.55
Diameter	0.16-1

• Fill Buffers are not a bottleneck

Application	IPC
PageRank	0.5-0.6
BFS	0.5-0.8
Betweenness Centrality	0.6-0.9
Connected Components	0.7-1
Diameter	0.7-1.2

• IPC numbers are low

□ Then what are the system bottlenecks?

Memory latency bound!

□ Poor locality?

Application	L1 Hit Rates	LLC Hit Rates
PageRank	74-77%	35-39%
BFS	89-90%	34-37%
Betweenness Centrality	93-98%	30%-33%
Connected Components	95-96%	29%-31%
Diameter	96-98%	10%-22%

• Significant cache hit rates

Graph Algorithms - Conclusions

- Good Scalability
- Significant locality
- Memory BW is not fully utilized
- FB are not fully utilized
- Mostly memory latency bounded

Thank you! Questions?

