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Constructive Modeling
• Computer and telecommunication systems 	

- Increasingly complex architectures	

- Several components	

- Unknown aspects	

• Performance modeling more difficult, but no less 
important	

• Classical approach: constructive modeling	

- “Mimic” the structure of the system	

- Expertise for building and solving the model	

• What if this approach doesn’t seem applicable?
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Today’s issue
• Using only the performance of each individual 

component	

• How to obtain the performance of the whole 
system? 

4

Arrivals of 
requests

Departures 	
of requests

Component #1

Component #3 Component #4

Component #5Component #2

Losses	
of requests

system-components.pdf

Open system with 5 components



Assuming calibrated models for each of the K 
components of an open system  

• The mean number of requests in the whole system	

- straightforward	

• The mean response time for the whole system	

- from Little’s law 	

• The loss probability for the whole system	

- more involved

Proposed Approach

5

a clean way to assemble the results of the analysis of decom-
posed subsystems.

Present-day systems often comprise a number of compo-
nents that work together to process incoming requests. As
mentioned above, it may be easier to model the performance
of each individual component than directly that of the whole
system. The component modeling may be performed using
a constructive approach requiring knowledge and expertise,
or using a “black box” approach, which parameterizes pre-
defined models by observing the relationships between the
component input and output parameters [6, 2, 3]. Several
approaches have been proposed in the literature for combin-
ing component-level models into system-level performance.

In the context of disk I/O requests, a case in point is the
work done by Ganger and Patt [12]. At that time, accurate
and sound models have been proposed for I/O subsystem
performance. But it was unclear how the improvements of
subsystems will be reflected in the overall system perfor-
mance. Among other things, the authors stress that looking
to improve the overall system performance is not directly the
same as improving the I/O subsystem performance. This is
because composing the performance of subsystems is not al-
ways straightforward.

The issue of predicting performance of a system based on
the behavior of its components has also been addressed in
the area of autonomic systems. Harbaoui et al. have pro-
posed a framework to predict the performance of a target
configuration when planning a system reconfiguration [13].
They decompose a distributed application into black boxes,
identifying the queue model for each black box and assem-
bling these models into a queueing network according to the
candidate target configuration.

More recently, Kraft et al. have studied the response times
experienced by disk I/O requests in consolidated virtualized
environments [16, 17]. The authors have shown how to ex-
trapolate the model of a single Virtual Machine (VM) into
a model to predict the degree of contention when multiple
VMs are accessing a remote storage server.

These previous works have emphasized the need and pro-
posed a specific-area solution to the problem of combining
models of components to represent the performance of a sys-
tem. In this paper, we attempt to propose a more general
framework for this problem.

3. FROM LOCAL TO GLOBAL SYSTEM
PERFORMANCE

We concentrate on systems in which requests (tasks, trans-
actions, jobs) arrive from an outside source, are processed
by the system and eventually depart from the system. We
refer to such systems as “open systems”.

The system considered consists of K known components
(see Figure 1) that are deemed important with respect to
a specific average performance measure F (e.g. mean num-
ber of requests in system (L), mean response time (R) or
loss probability (P )). We assume that we have a set of I
system-level measurement points {xexp

S

, f

exp

S

}, i = 1, . . . , I,
where x

exp

S

denotes the mean measured system throughput,
i.e., the number of requests successfully processed by the
system per time unit, and f

exp

S

is the corresponding value of
the selected performance measure. We use the superscript
exp to refer to measured values and the superscript mod to
denote values obtained from a model. We assume that cali-
brated models have been developed for each of the K system
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Figure 1: A system with K = 5 components.

components. Our K component models can be viewed as a
set of K functions fmod

k

(xmod

k

) with k = 1, . . . ,K.
In order to be able to use our component models to assess

overall system performance, we must know the relationship
between the overall system throughput X

S

and the compo-
nent throughputs X

k

, k = 1, . . . ,K. This is an essential
assumption. In practice, this relationship will be known
from the nature of the system or from measurements. An-
other essential assumption is that a given request occupies
a single component at a time.
Given this assumption, obviously, if the selected perfor-

mance measure is the mean number of requests L, the over-
all mean number of requests in the system should be equal
to the sum of the mean numbers obtained from the com-
ponent models for throughput levels that correspond to the
measured system throughput levels {xexp

S

}
i

.
If the selected performance measure is the mean response

time R, Little’s formula [7] can be used to obtain the overall
mean response time for arbitrary values of system through-
put xmod

S

:

r

mod

S

=

P
K

k=1(r
mod

k

x

mod

k

)

x

mod

S

(1)

Clearly, to attempt to validate this approach, we select
system throughput values xmod

S

= x

exp

S

and we compare the
mean response time values obtained from Formula (1) with
those known from measurements rexp

S

for the same values of
system throughput.
If the loss probability is the selected performance measure,

the overall loss probability can be expressed as:

p

mod

S

=
1

1 +
x

mod

SP
K

k=1 x

mod

k

.p

mod

k

/(1�p

mod

k

)

(2)

Formula (2) allows us to assess the overall loss probability
in terms of component-level loss probabilities and request
throughputs.
As mentioned earlier, for our approach to work, we need to

know the relationship between the overall system through-
put and the throughputs of individual components. If this
relationship is not obvious or known from the structure of
the system, we may be able to determine it using measure-
ments. To this end, we need at least one set of reasonably
synchronized measurements of xexp

S

and x

exp

k

, k = 1, . . . ,K.
If only one set of synchronized measurements is available,
the best one can do is to assume that the observed ratios
x

exp

k

/x

exp

S

carry over to other workload levels, i.e., remain
constant as the overall system throughput varies. With mul-
tiple measurement points, one can check if this is indeed the
case or possibly try to infer a more involved relationship
between throughputs.
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overall system performance, we must know the relationship
between the overall system throughput X

S

and the compo-
nent throughputs X

k

, k = 1, . . . ,K. This is an essential
assumption. In practice, this relationship will be known
from the nature of the system or from measurements. An-
other essential assumption is that a given request occupies
a single component at a time.
Given this assumption, obviously, if the selected perfor-

mance measure is the mean number of requests L, the over-
all mean number of requests in the system should be equal
to the sum of the mean numbers obtained from the com-
ponent models for throughput levels that correspond to the
measured system throughput levels {xexp

S

}
i

.
If the selected performance measure is the mean response

time R, Little’s formula [7] can be used to obtain the overall
mean response time for arbitrary values of system through-
put xmod

S

:

r

mod

S

=

P
K

k=1(r
mod

k

x

mod

k

)

x

mod

S

(1)

Clearly, to attempt to validate this approach, we select
system throughput values xmod

S

= x

exp

S

and we compare the
mean response time values obtained from Formula (1) with
those known from measurements rexp

S

for the same values of
system throughput.
If the loss probability is the selected performance measure,

the overall loss probability can be expressed as:

p

mod

S

=
1

1 +
x

mod

SP
K

k=1 x

mod

k

.p

mod

k

/(1�p

mod

k

)

(2)

Formula (2) allows us to assess the overall loss probability
in terms of component-level loss probabilities and request
throughputs.
As mentioned earlier, for our approach to work, we need to

know the relationship between the overall system through-
put and the throughputs of individual components. If this
relationship is not obvious or known from the structure of
the system, we may be able to determine it using measure-
ments. To this end, we need at least one set of reasonably
synchronized measurements of xexp

S

and x

exp

k

, k = 1, . . . ,K.
If only one set of synchronized measurements is available,
the best one can do is to assume that the observed ratios
x

exp

k

/x

exp

S

carry over to other workload levels, i.e., remain
constant as the overall system throughput varies. With mul-
tiple measurement points, one can check if this is indeed the
case or possibly try to infer a more involved relationship
between throughputs.



Applicability Conditions

• Assumptions	

1) The throughput ratios constant or known	

• The relationship between the overall system 
throughput and the throughputs of individual 
components	

• e.g. From the structure of the system (visit ratios in 
MVA and BCMP) or from synchronized 
measurements	

2) A request occupies a single component at a time	

•  But arbitrary service disciplines and distributions or 
arrivals of requests
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Cases of failure (1/2)

• State-dependent routing	

- Systems with load-balancing policies	

- e.g. IP networks, round robin DNS, cluster	

• If the current number of requests waiting in Comp-2 is 

smaller than 10, 	

• Then requests are routed to Comp-2. 	

• Otherwise, they are equally likely to be dispatched to 

Comp-2 and Comp-3.	

- Throughput ratios are not constant
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Cases of failure (2/2)

• Simultaneous resource possession	

- Requests may simultaneously “occupy” two or more 
resources	

- e.g. Databases and certain disk controllers	

- Straightforward application of Little’s law impossible
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• Internal losses and arrivals	

- e.g. Due to buffer overflow, transmission errors, 
dynamic routing	

- Can be viewed as state-dependent routing	

- Throughput ratios are not constant
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Discovery of an Unknown Component

• Centralized system architecture	

- All but one component have been 
instrumented, measured, and modeled	

• One component is unknown or neglected	

• e.g. Internal tables or buffers 	

• Our example	

- Measurements for Components 1, 2 and 3	

- No measurements for Component 4	

• Mean service time at component 4 is 10 times faster 
than at component 1	

• Deemed so fast that it is unlikely to be a factor in the 
overall system performance

Initial performance prediction
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Root Cause Analysis



• Difference in the performance between 
the system measurement points and 
the predicted performance 	

- Observed error	

- Appears non-random

Root Cause Analysis

Residual 	
performance
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• Fitting this residual behavior to a 
simple M/M/1 queue



• Difference in the performance between 
the system measurement points and 
the predicted performance 	

- Observed error	

- Appears non-random

Root Cause Analysis

Residual 	
performance

Good match!

 0

 50

 100

 150

 200

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

M
ea

n
 r

es
p

o
n

se
 t

im
e 

(R
)

Mean throughput (X)

Measurements
Modeling Prediction

Refined performance 	
prediction

 0

 5

 10

 15

 20

 0  0.02 0.04 0.06 0.08  0.1  0.12 0.14

M
e
a
n
 
n
u
m
b
e
r
 
(
L
)

Mean throughput (X)

Measurements

 0

 5

 10

 15

 20

 0  0.02 0.04 0.06 0.08  0.1  0.12 0.14

M
e
a
n
 
n
u
m
b
e
r
 
(
L
)

Mean throughput (X)

Measurements
Calibrated Model

• It is likely that an additional 
component was not measured.	

-  Adding the found M/M/1 queue to 
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• It is likely that an additional 
component was not measured.	

-  Adding the found M/M/1 queue to 
the modeling approach improves 
overall match 

!

• Fitting this residual behavior to a 
simple M/M/1 queue • If residual performance pattern more 

chaotic and not matched by a 
reasonable model	

- mere measurement “noise”	

- the system violates assumptions



Conclusions

• A simple approach for combining calibrated 
performance models of individual components into 
a system-level performance model	

• Applicability conditions for open systems	

• Analyzing the discrepancies between the model 
predictions and the measurements may be useful	

• Future works: 	

- distinguishing “measurement noise” from missing 
components	

- extending the approach to closed systems
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Thank you!	
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Questions?
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