Predicting the System Performance by Combining Calibrated Performance Models of its Components

A Preliminary Study

Thomas Begin*† Alexandre Brandwajn#Δ

* LIP - INRIA RESO - Univ. Lyon, France
† DIVA Lab, Univ. Ottawa, Canada
Computer Engineering - Univ. California Santa Cruz, US
Δ PALLAS International Corporation, San Jose, US
Outline

• Context and Motivation
• Proposed Approach
• Applicability Conditions
• Examples
 – Success
 – Failure
 – Unknown component
• Conclusions
Constructive Modeling

- Computer and telecommunication systems
 - Increasingly complex architectures
 - Several components
 - Unknown aspects
- Performance modeling more difficult, but no less important
- Classical approach: constructive modeling
 - “Mimic” the structure of the system
 - Expertise for building and solving the model
- What if this approach doesn’t seem applicable?
Today’s issue

- Using only the performance of each individual component
- How to obtain the performance of the whole system?

Open system with 5 components
Proposed Approach

Assuming calibrated models for each of the K components of an open system

- The mean number of requests in the whole system straightforward
- The mean response time for the whole system from Little’s law
- The loss probability for the whole system more involved

$$r_{mod}^S = \frac{\sum_{k=1}^{K} (r_{k}^{mod} x_{k}^{mod})}{x_{mod}^S}$$

$$p_{mod}^S = \frac{1}{1 + \sum_{k=1}^{K} x_{mod}^k p_k^{mod} / (1 - p_k^{mod})}$$
Applicability Conditions

• Assumptions

1) The **throughput ratios** constant or known
 • The relationship between the overall system throughput and the throughputs of individual components
 • e.g. From the structure of the system (visit ratios in MVA and BCMP) or from synchronized measurements

2) A **request occupies a single component** at a time
 • But arbitrary service disciplines and distributions or arrivals of requests
Successful case

- Centralized system architecture
 - Multiple servers
 - Coeff. of variation for service times: 0.5, 2 and 3
 - Probabilistic routing
Successful case

- Centralized system architecture
 - Multiple servers
 - Coeff. of variation for service times: 0.5, 2 and 3
 - Probabilistic routing

- Calibrated individual component models

![Diagram](image)
Successful case

- Centralized system architecture
 - Multiple servers
 - Coeff. of variation for service times: 0.5, 2 and 3
 - Probabilistic routing

- Calibrated individual component models

Component 1

Component 2
Successful case

- Centralized system architecture
 - Multiple servers
 - Coeff. of variation for service times: 0.5, 2 and 3
 - Probabilistic routing
- Calibrated individual component models

![Component 1](image1)
![Component 2](image2)
![Component 3](image3)
Successful case

- Centralized system architecture
 - Multiple servers
 - Coeff. of variation for service times: 0.5, 2 and 3
 - Probabilistic routing

- Calibrated individual component models

- Combined overall model

Prediction on the system response time
Cases of failure (1/2)

- State-dependent routing
 - Systems with load-balancing policies
 - e.g. IP networks, round robin DNS, cluster
 - If the current number of requests waiting in Comp-2 is smaller than 10,
 - Then requests are routed to Comp-2.
 - Otherwise, they are equally likely to be dispatched to Comp-2 and Comp-3.
 - Throughput ratios are not constant
Cases of failure (2/2)

- **Internal losses and arrivals**
 - e.g. Due to buffer overflow, transmission errors, dynamic routing
 - Can be viewed as state-dependent routing
 - Throughput ratios are not constant

- **Simultaneous resource possession**
 - Requests may simultaneously “occupy” two or more resources
 - e.g. Databases and certain disk controllers
 - Straightforward application of Little’s law impossible
Discovery of an Unknown Component

- Centralized system architecture
 - All but one component have been instrumented, measured, and modeled

- One component is unknown or neglected
- e.g. Internal tables or buffers

- Our example
 - Measurements for Components 1, 2 and 3
 - No measurements for Component 4

 - Mean service time at component 4 is 10 times faster than at component 1
 - Deemed so fast that it is unlikely to be a factor in the overall system performance

Initial performance prediction

Clearly, the proposed approach is missing something!
Root Cause Analysis
Root Cause Analysis

• Difference in the performance between the system measurement points and the predicted performance
 - Observed error
 - Appears non-random

![Residual performance](image)

Mean number (L) vs Mean throughput (X)
Root Cause Analysis

- Difference in the performance between the system measurement points and the predicted performance
 - Observed error
 - Appears non-random

Fitting this residual behavior to a simple $M/M/1$ queue

Good match!
Root Cause Analysis

- Difference in the performance between the system measurement points and the predicted performance
 - Observed error
 - Appears non-random

Residual performance

- Fitting this residual behavior to a simple $M/M/1$ queue

Good match!

- It is likely that an additional component was not measured.
 - Adding the found $M/M/1$ queue to the modeling approach improves overall match

Refined performance prediction
Root Cause Analysis

- Difference in the performance between the system measurement points and the predicted performance
 - Observed error
 - Appears non-random

Refined performance prediction

- It is likely that an additional component was not measured.
 - Adding the found \(M/M/1\) queue to the modeling approach improves overall match

Fitting this residual behavior to a simple \(M/M/1\) queue

- If residual performance pattern more chaotic and not matched by a reasonable model
 - mere measurement “noise”
 - the system violates assumptions
Conclusions

• A simple approach for combining calibrated performance models of individual components into a system-level performance model

• Applicability conditions for open systems

• Analyzing the discrepancies between the model predictions and the measurements may be useful

• Future works:
 - distinguishing “measurement noise” from missing components
 - extending the approach to closed systems
References

Thank you!

Questions?