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The importance of measurement and
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Some background

* Main interest: system reliability
* Why and how do systems fail in the wild?
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Field data

=Different hardware failure events
=Hardware replacements
=Correctable and uncorrectable errors in DRAM
=Server outages
=Hard disk drive failures
=Sector errors in hard disk drives
=Data corruption in storage systems

=Failures in solid state drives m

*Job logs

-Google, OpenCloud (Hadoop cluster at CMU), Yahoo! Hadoop tra%

Observations often different from expectations
Surprising to operators as well as manufacturers
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Errors in DRAM

Why DRAM errors?

DRAM is one of the most frequently replaced H/W components
What are DRAM errors?

Cell has different value from what was written to it

Can be correctable (using ECC) or uncorrectable

How do they happen?
Soft errors:
Cosmic rays, alpha particles, leakage, random noise
Transient, not repeatable
Hard errors:
Permanent hardware problem, repeatable

How common are DRAM errors?

Correctable errors (CEs)
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34% of machines had correctable errors, 1.3% uncorrectable errors

Much higher frequency than previously reported
Why?
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After an error, more are likely to follow...

o Platform D
-e-Platform C 52
10°H ——Platform A 3

Number of CEs in month

10° 10’ 10° 10° 10* 10°

Number of CEs in prev. month

Not consistent with soft errors ....

Error patterns in DRAM dimms
Error Mode BG/L Banks | BG/P Banks | Google
Banks

[Repeat address  80.9% 59.4% 58.7%
Repeat row 4.7% 31.8% 7.6%
Repeat column  8.8% 22.7% 14.5%
Whole chip 0.52% 2.20% 2.02%
Single Event 17.6% 29.2% 34.9%

* The patterns on the majority of banks can be linked to
hard errors.

* Different error mode than commonly assumed!
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Many errors are hard errors — so what?

How to protect against errors?
Most commonly: only ECC
For hard errors: Page retirement
Move page’s content to different page and discontinue use
Some page retirement mechanisms exist
Solaris
BadRAM patch for Linux
But:

Rarely used in practice
No existing evaluation of policies on real traces

1

Policies for retiring pages

First error on page => retire page
Second error on page => retire page
Repeat error on address => retire page
Repeat error on row => retire row
Repeat error on column => retire column

12
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How effective is page retirement?

1007

95
Effective

licy
90

% errors avoided in the system

| 1MB
85 I
10

5
10
Avg. # pages retired / node

How effective is page retirement?
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* More than 95% of errors can be prevented with <1MB
sacrificed per node

5

* Now implemented at Facebook
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DRAM reliability — key points

DRAM errors occur at significant rate
Often different from common assumptions

Hard errors rather than soft errors
=> Can effectively protect with page retirement

Some parts of address space (kernel space) more
error prone

=> Special protection for kernel space
Little sensitivity to temperature

=> adapt cooling policies
15

Field data

*Different hardware failure events
*Hardware replacements
=Correctable and uncorrectable errors in DRAM
=Server outages
*Hard disk drive failures
=Sector errors in hard disk drives
*Data corruption in storage systems

[.Failures in solid state drives Lm

*Job logs
-Google, OpenCloud (Hadoop cluster at CMU), Yahoo! Hadoop trace
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Flash reliability

Why flash?

More and more data is living on flash
=> data reliability depends on flash reliability
Worry about flash wear-out

Little prior work on production systems

Lab studies using accelerated testing
Only one field study (Sigmetrics’15)

17

The data

Data on wide variety
of error types

6 years of data

Data on repairs,

I .
replacements, bad chl)ggte 10 drive models
blocks & bad chips (same FTL & ECC)

MLC, SLC, eMLC 4 chip vendors

18
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Drive replacements

Percentage of drives replaced annually due to suspected
hardware problems over the first 4 years in the field:
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~1-2% of drives replaced annually, much lower than hard disks!

0.5-1.5% of drives developed bad chips per year
Would have been replaced without methods for tolerating chip failure

Errors experienced during a drive’s lifecycle
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Errors experienced during a drive’s lifecycle

Transparent

Non-transparent

errors

errors

Correctable error
Read retry
Write retry

Erase error
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Errors experienced during a drive’s lifecycle

Transparent

Non-transparent

errors

errors

Correctable error
Read retry
Write retry

Erase error

Uncorrectable error
Final write error
Meta error

Timeout error

22
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Errors experienced during a drive’s lifecycle

Correctable error : : - -

1=
)
= g Read retry
= Write retry
= Symptoms of
= Erase error bad blocks or
bad chips
‘g Uncorrectable error
§ o Final write error |
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© C
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Percentage (%) of drives with errors

Non-transparent errors common:
26-60% of drives with uncorrectable errors
2-6 out of 1,000 drive days experience uncorrectable errors

Much worse than for hard disk drives (3.5% experiencing sector errors)!

What factors impact flash reliability?

Wear-out (limited program erase cycles)
Technology (MLC, SLC)

Lithography

Age

Workload

What reliability metric to use?
Raw bit error rate (RBER)

Probability of uncorrectable errors
Why not UBER? We shall see ...

24
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Effect of wear-out (program erase cycles)

Common expectation:
Exponential increase of RBER with PE cycles

A

RBER

=== Exponential /
growth /

PE cycles

25

Median RBER

Effect of wear-out (program erase cycles)
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Big differences across models (despite same ECC)
Linear rather than exponential increase
No sudden increase after PE cycle limit
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Effect of type of flash (SLC versus MLC)

Common expectation:
Lower error rates under SLC ($SS) than MLC

27

Effect of type of flash (SLC versus MLC)

8 g §

q|> b MLC-A-e— MLC-D Bﬂ" o A MLC-A—e= MLC-D

© |- MLC-B-4- SLC-A ) o [& MLC-B-2- SLC-A

-G 5] g

e MC-C-5- SLC-B - 2 2 MLC-C-8- SLC-B : W\s
i) 2 g4 o] o
c 3 8 s o} 5
€ 1 0 J a g o
S 0 ro .8
5 < L g 4 pEE
Q w oA o
5 A > 5800 \ o opd

o | & i idn s ° b H.E.,E'Btg,ui‘ﬁ R-Dapda-b HQL p A b

O | 4AALEEESS 3] o

+ 4 o884 o

g T T \ \ o 1T T T T 1

0 1000 2000 3000 4000 0 1000 2000 3000 4000
PE cycle PE cycle

RBER is lower for SLC drives than MLC drives
Uncorrectable errors are not consistently lower for SLC drives

SLC drives don’t have lower rate of repairs or replacement
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Effect of lithography

Common expectation:
Higher error rates for smaller feature size

29

Effect of lithography
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Smaller lithography => higher RBER
Lithography has no clear impact on uncorrectable errors
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Effect of age (time in production)?
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Age has an effect beyond PE-cycle induced wear-out

Effect of workload?

Lab studies demonstrate workload induced
error modes

Read disturb errors
Program disturb errors
Incomplete erase operations

Evidence of read disturb affecting RBER for some models
No effect of erases and writes

Workload does not affect uncorrectable errors
UBER (uncorrectable bit error rate) is not a meaningful metric
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RBER and overall reliability

The main purpose of RBER is as a metric for
overall drive reliability
Allows for projections on uncorrectable errors
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33

RBER and uncorrectable errors
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Fraction of drive days with UE

Median RBER of drive

Drives (or drive days) with higher RBER don’t have higher frequency
of uncorrectable errors

RBER is not a good predictor of field reliability

Uncorrectable errors caused by other mechanisms than corr. errors?

2016-03-18

17



What is predictive of uncorrectable errors?

04 | g any prior error
0.3 —| & errorin prior month
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write_error
erase_error
meta_error
read_error

timeout_error

final_write_error
response_error
bad_block_count
uncorrectable_error

Prior errors highly predictive of later uncorrectable errors

Potential for prediction?
Initial results say yes!

avg month I

Flash reliability — key points

Significant rate of non-transparent errors
Higher than hard disk drives
Need to protect against those!

To some degree predictable
Work in progress on how to use predictions

Many aspects different from expectations
Linear rather than exponential increase with PE cycles
RBER not predictive of non-transparent errors
SLC not generally more reliable than MLC

Many other results not covered in talk ...

comparison of projections with field RBER, ...

Bad chips, bad blocks, factory bad blocks, rate of repair and replacement,

36
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FIELD DATA

*Different hardware failure events
*Hardware replacements
=Correctable and uncorrectable errors in DRAM
=Server outages
*Hard disk drive failures
=Sector errors in hard disk drives
=Data corruption in storage systems
=Failures in solid state drives

*Job logs
[-Google, OpenCloud (Hadoop cluster at CMU), Yahoo! Hadoop trace

37

Exit status of jobs?

Breakdown of Job Exit Status

oo | N 2-5% of
jobs fail!
Googe cm
e FREEJobSﬁ\ 3-55% of jobs
| get killed!
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Percentage %

| Il Completed Jobs [ | Killed Jobs [lll Failed Jobs
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Impact of job length

Completed Killed Failed

[S)
©
TN

Task Weeks (Log)
3
S

Long jobs more likely to fail or get killed.
More parallelism => more likely to fail or get killed

What brings jobs down?

Node failure?
* Small fraction of failed/killed jobs suffered evictions

Resource usage (memory) exceeds requested resources?
* Happens very rarely

Preemption by higher priority jobs?

Google Batch Jobs
100

80
60
40
20
B Completed Jobs|
|Killed Jobs
o B Failed Jobs
2 4 6

8

Percentage %

Priority (Lowest ——> Highest)
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What brings jobs down?

* Node failure?
* Small fraction of failed/killed jobs suffered evictions
* Resource usage (memory) exceeds requested resources?
* Happens very rarely
* Preemption by higher priority jobs?
Production jobs and prio-8 jobs still see 15% killed

* Task failure?
* < 4% of Google jobs with a failed task complete
* <60% of CMU jobs with a failed task complete

Can individual tasks recover from failure?

* Recovery mechanisms: task retry
Google OpenCloud

0.5 0.4

0.4

03 b
0.2 0.15
0.1 0.1
0.05
Y ) —
1St entes AN cats S e

1stretry 2" retry >2 retries

Prob task succeeds in next attempt

Prob task succeeds in next attempt
o
N

Retrying more than once or twice is futile!
Users are (too) optimistic!

:70-90% retry more than once  pump Waste of
.15-30% retry more than twice resources!
.Some retry > 100 times

2016-03-18
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Is resource usage different for failed/killed tasks?

103 CPU 103 Memf)ry Xm_i Disk
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Is resource usage different for failed/killed tasks?

103 CPU 103 Memory Xm_i Disk |
10 1 I |
| — I 2 t I 3 :
I | 1 I
l | | | | | 1 |
5 2 ‘
- 1| ‘
([ - Lo 0 L T o | J L
COMPLETED KILLED ~ FAILED COMPLETED KILLED  FAILED COMPLETED KILLED  FAILED

Failed and killed jobs use more resources.
They also requested more resources.

2016-03-18
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Can we predict whether a job will get killed?

Using only information available at start time

Predict Google Job KILL (Pre—Run v
Predictors: <numTasks,

ars)
s, req-CMU, req-disk, req-MEM>

-
0.8
0.6
0.4
0.2
o ey
precision recall spec. accuracy

Can predict whether a job will get killed with
high precision and recall (before it even runs).

Can we predict whether a job will fail?

Predict Google Job FAILURE (Pre-Run vars)
Predictors: <req-disk-avg>

) ?
0

precision  recall spec. accuracy

Can predict job failure with high precision,
but lower recall...
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Can we predict whether a job will fail?

Predict Google Job FAILURE (Pre-Run vars)
Predictors: <req-disk-avg>

1 - _ .
0.8
0.6
0.4
1AW
0

precision  recall spec. accuracy

Can predict job failure with high precision,
but lower recall...
Adding resource usage improves recall a bit (~¥30%)

Can we predict whether a job will fail?

Pre-run information + one task failure

Predict Google Job FAILURE (Pre-Run + DidTaskFail)
Predictors: <didTaskFail, numtasks,reg—disk—avg, req—mem-avg>

precision recall spec. accuracy

Using information on task failure brings
recall up to 85%.

24



Can we predict whether a task will fail?

Pre-run information + online monitoring of resource usage

precision recall spec accurac

83% precision and 98% recall using online
resource monitoring.

Key points: job log analysis

Surprisingly large fraction of jobs fails or gets killed
Patterns: e.g. resource hungry jobs more likely to die
Failed tasks have low chances of recovering

Strong potential to predict job failures / killings
Work in progress on how to use predictions!

2016-03-18
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Talk conclusion

Failures in the real world often very different
from common assumptions or observations
inthe lab

Both for hardware and software failures
Results from field data help in building more
resilient systems

E.g. often potential for prediction

Importance of measuring & analyzing systems

2016-03-18

26



