
Efficient and Viable Handling
of Large Object Traces

Philipp Lengauer
Verena Bitto

Hanspeter Mössenböck

2016-03-15



2015-11-23 Johannes Kepler University Linz 2

Recap - AntTracks

public void foo() {

String[] object = { “Tracing”, “rocks” };

}

Location

Array length

Thread

Interpreter | Compiled code

Size Address

Type

… we would know all there is to know about every object?

Destination 
address

Source 
address

… then we could reproduce the entire heap for every point in time and do offline analysis!



2015-11-23 Johannes Kepler University Linz 3

Allocations

TLAB (T3)

Addresses of objects that are allocated into a TLAB are computable offline!

Heap

o1 o2

o1.addr = TLAB.addr = offset

offset o1.size o2.size

o2.addr = o1.addr + o1.size

addr(o
n 
) =

addr(o
n-1 

) + size(o
n-1 

)

addr(TLAB(o
n 
)) if n = 1

else

TLAB (T2)

...

TLAB (T1)



2015-11-23 Johannes Kepler University Linz 4

Minor GCs

Eden Survivor to Survivor from Old

M
in

or
 G

C

Move by GC-Thread 1

Move by GC-Thread 2

PLAB

New addressed of moved objects are computable offline!



2015-11-23 Johannes Kepler University Linz 5

Major GCs

Heap

M
aj

or
 G

C

Claim: objects live and die in groups due to their sequential allocation



2015-11-23 Johannes Kepler University Linz 6

Optimized Events

Optimized allocation event

event type allocation site array length

address → previous events + TLAB information

→ 4 bytes per allocation
→ computable at compile-time (JIT)

event type from address

Optimized move event Region move event

event type from address to address

object count

~ 312 objects per event
(3.65Kb -> 12b)



2015-11-23 Johannes Kepler University Linz 7

Digging Our Own Grave



2015-11-23 Johannes Kepler University Linz 8

Trace Size vs Disk Limit

time

tr
a

ce
 s

iz
e

Disk limit



2015-11-23 Johannes Kepler University Linz 9

Compression

+ Trace reduced to 21.6%

- Overhead increased by 21.9%

~ Trace reduced to 89.7%

+ Overhead increased by 2.3%



2015-11-23 Johannes Kepler University Linz 10

Compression

time

tr
a

ce
 s

iz
e

Disk limit

uncompressed

compressed

Same problem, just a little bit later ...



2015-11-23 Johannes Kepler University Linz 11

Similar Problem: Objects vs Heap Size

time

R
A

M

Heap limit
GC GC



2015-11-23 Johannes Kepler University Linz 12

Rethink Trace Size vs Disk Limit

time

tr
a

ce
 s

iz
e

Disk limit
What parts of trace to remove?

divide trace into chunks

delete oldest chunk



2015-11-23 Johannes Kepler University Linz 13

Rotation

12 - 16GB

4GB0, 4, 8 1, 5, 9 2, 6 3, 7

Split trace into n files, overwrite oldest file first.

Every trace file may be eventually be the oldest.

What is the state of the heap at the beginning of the oldest file?

addresses
sizes

Need-to-know



2015-11-23 Johannes Kepler University Linz 14

Synchronization Points

12 - 16GB

4GB0, 4, 8 1, 5, 9 2, 6 3, 7

Use GCs as synchronization points

What if no GC occurs at the right point?



2015-11-23 Johannes Kepler University Linz 15

Trace Size Deviation

12 - 20GB

4GB0, 4, 8 1, 5, 9 2, 6 3, 7

1GB

Trigger “Emergency GCs” after max deviation is reached. 

MaxSize=16GB Deviation=25%

file count = 100% / Deviation
target file size = MaxSize * Deviation
max file size = file size + file size * Deviation



2015-11-23 Johannes Kepler University Linz 16

Synchronization GC

event type from address

Optimized move event

event type

Optimized move sync event

type

Replace all move events with move sync events.

from address

addresses

sizes types

allocation sitesNeed-to-know

Nice-to-know

allocation site



2015-11-23 Johannes Kepler University Linz 17

Overhead



2015-11-23 Johannes Kepler University Linz 18

Quality



2015-11-23 Johannes Kepler University Linz 19

Restoring Allocation Sites

Mark Word: 64

Class Word: 64

Payload

Unused: 25

Pointer to lock / thread

hash code: 31 Other: 6 State: 2

State: 2

...

xor

Store allocation site in the upper 16 bits of the identity hash!

- Must generate hash code eagerly for every (!) object.

- Reduces entropy of the hash to 0.0015%.



2015-11-23 Johannes Kepler University Linz 20

Artificial Worst Case

void main() {
Set<Object> set = new HashSet<>();
for(int i = 0; i < 1_000_000_000; i++) {

set.put(create());
}
for(int i = 0; i < 1_000_000_000; i++) {

set.contains(create());
}

}

Object create() {
// all objects have same allocation site
return new Object();

}

→ run time +2191%



2015-11-23 Johannes Kepler University Linz 21

Overhead with Saving Allocation Sites



2015-11-23 Johannes Kepler University Linz 22

Reducing Hash Code Generation

Assumption: classes overwriting hashcode() will most likely never use the identity hash!



2015-11-23 Johannes Kepler University Linz 23

Summary

On-the-fly compression Trace rotation

ICPE'16



2015-11-23 Johannes Kepler University Linz 24

Q&A

?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

