(@)

Efficient and Viable Handling
of Large Object Traces

Philipp Lengauer
Verena Bitto
Hanspeter Mossenbock

2016-03-15

dynatrace

Recap - AntTracks TR
... we would know all there is to know about every object?

public void foo() {} Interpreter | Compiled code

Size Address Location

Thread { String[] object = { “Tracing”, *“rocks” };
%/—/

Type Array length

Destination Source
address address

... then we could reproduce the entire heap for every point in time and do offline analysis!

@ 2015-11-23 | Johannes Kepler University Linz

Allocations ISMpNes ebien
Heap
TLAB (T1) (o1) 02 D) TLAB (T2) TLAB (T3)
N Y N
offset ol.size 02.size

02.addr = ol.addr + ol.size

ol.addr = TLAB.addr = offset

addr(TLAB(o_)) ifn=1
addr(o) =
addr(o) +size(o) else

Addresses of objects that are allocated into a TLAB are computable offline!

@ 2015-11-23 | Johannes Kepler University Linz

Minor GCs

Eden Survivor to Survivor from old

00900¢ 0000 [oo

Minor GC

o][O0

000 |0

PLAB

New addressed of moved objects are computable offline! —» Move by GC-Thread 1

—® Move by GC-Thread 2

(@)

2015-11-23 | Johannes Kepler University Linz

Major GCs

Heap

ool 1 1 10jei0lele] | 1eieleleieleleiel I 1010l

(s -

OCOO00000O0O0O0O0O0OOO0OO0

Major GC

Claim: objects live and die in groups due to their sequential allocation

@ 2015-11-23 | Johannes Kepler University Linz

Optimized Events LR e

Optimized allocation event

address — previous events + TLAB information

LS

event type allocation site array length ~ 4 bytes per allocation

- computable at compile-time (JIT)

Optimized move event Region move event
event type from address event type from address to address

object count

~ 312 objects per event
(3.65Kb -> 12b)

@ 2015-11-23 | Johannes Kepler University Linz

Digging Our Own Grave

250
200

150

[MB/ 5]

100

50

Benchmarks

2015-11-23 | Johannes Kepler University Linz

Trace Size vs Disk Limit

trace size

Disk limit

time

@ 2015-11-23 | Johannes Kepler University Linz

Compression

CON

—
en
&

+ Trace reduced to 21.6%

- Overhead increased by 21.9%

CON

—
en
&

~ Trace reduced to 89.7%

+ Overhead increased by 2.3%

@ 2015-11-23 | Johannes Kepler University Linz

Compression

trace size

Disk limit

uncompressed

compressed

Same problem, just a little bit later ...

time

@ 2015-11-23 | Johannes Kepler University Linz

Similar Problem: Objects vs Heap Size

RAM

Heap limit
GC

L

time

@ 2015-11-23 | Johannes Kepler University Linz

Rethink Trace Size vs Disk Limit

trace size

What parts of trace to remove?

divide trace into chunks /

Disk limit

ndelete oldest chunk

time

@ 2015-11-23 | Johannes Kepler University Linz

Rotation

Split trace into n files, overwrite oldest file first.

§-80

12 - 16GB

Every trace file may be eventually be the oldest.

What is the state of the heap at the beginning of the oldest file?

sizes

addresses

Need-to-know

2015-11-23 | Johannes Kepler University Linz

4GB

Synchronization Points

Use GCs as synchronization points

o Y il
= | =
04, 8 15,9 2,6

12 - 16GB

3,7 4GB

What if no GC occurs at the right point?

@ 2015-11-23 | Johannes Kepler University Linz

Trace Size Deviation

Trigger “Emergency GCs” after max deviation is reached.

> 1GB
— -
aL . S
64, 8 15,9 2,6 4GB

12 - 20GB

MaxSize=16GB Deviation=25%

file count = 100% / Deviation
target file size = MaxSize * Deviation
max file size = file size + file size * Deviation

@ 2015-11-23 | Johannes Kepler University Linz

Synchronization GC

Optimized move event Optimized move sync event
event type from address event type allocation site type from address

Replace all move events with move sync events.

addresses

Need-to-know allocation sites

Nice-to-know

@ 2015-11-23 | Johannes Kepler University Linz

Overhead

@&%
& 4
"3
i
&
55
&
&
B
&
L=
&o\w
;#
&
R
o0
N
&
R
OO
A
O//@
&S
&
ﬁu//@
coa/
L 1 1 1 1 1 1
o

70
60
50
40
30
20
10

[96] pEEYIEAD BT UNY

Benchmarks

N
=
3
>
5=
7}
L .
o
=
c
-]
—
2
o}
0]
X
o
[0}
c
c
©
<
o
S
™
N

Quality

100 ~

90

80

70

€0

50

Quality [26]

40

30

20

10

compiler.compiler derby —— sunflow xmlvalidation §
compiler.sunflow serial *ml.transform :
1 1 1 1 1

2 4 6

GCs after synchronization

Restoring Allocation Sites

@)

Mark Word: 64

hash code: 31

Other: 6 State: 2

Class Word: 64

Pointer to lock / thread

Payload xor

- Must generate hash code eagerly for every (!) object.

- Reduces entropy of the hash to 0.0015%.

2015-11-23 | Johannes Kepler University Linz

Store allocation site in the upper 16 bits of the identity hash!

U R TELLING ME U REDUCE

THE HASH CODE T0 15 BITS

Artificial Worst Case

void main() {
Set<Object> set = new HashSet<>();
for(int i = 0; i < 1 000 000 000; i++) {
set.put(create());
}
for(int i = 0; i < 1 000 000 000; i++) {
set.contains(create());
}
}

Object create() {

// all objects have same allocation site
return new Object();

- run time +2191%

@ 2015-11-23 | Johannes Kepler University Linz

5
e
&
&
,.,.\%o
W
&
fo%
\%/ >
&
&
n
O] -
=
0p) .
]
S
2 g &
- y
Q]
@)
O
<
g
g f/o,p,, |
C N W
 — //&4 s
> s >
® £
—
N y s
& 2
= — coa, m
W 2
[}
© S
a ™
N
e L 1 1 1 1 1 | i NW
- g =° 8 8 ¢ 8 & 8 - &
o o
e [96] pEayIaAC BWIL UNY ~N
>

(@)

Reducing Hash Code Generation

Assumption: classes overwriting hashcode () will most likely never use the identity hash!

Eliminated hashes rate [%)]

Benchmarks

14
12
10

Run-time overhead [%)]

= I S .

Benchmarks

@ 2015-11-23 | Johannes Kepler University Linz

Summary

S
>

On-the-fly compression

-

-
-

4
4

=

Trace rotation

Efficient and Viable Handling of Large Object Traces

Philipp Lengauer*

*Institute for System Software
Johannes Kepler University Linz, Austria

philipp.lengauer@jku.at

ABSTRACT

Understanding and tracking down memory-related perfor-
mance problems is a tedious task, especially when it involves
automatically managed memory, i.e., garbage collection. A
multitude of monitoring tools show the substantial need of
developers to deal with these problems efficiently. Unfortu-

nataly stateonfthooart tanle cither conerate an ineerntahlo

Verena Bitto?

Hanspeter Méssenbock*

2Christian Doppler Laboratory MEVSS
Johannes Kepler University Linz, Austria
verena.bitto@jku.at

1. INTRODUCTION

The widespread use of programming languages with auto-
matic memory management has stressed the need for mem-
ory profiling tools. Although managed memory relieves pro-
grammers from the error-prone task of freeing memory man-
ually, it comes at the cost of performance problems that are
hard to track down. When an allocation fails due to a fall

ICPE'16

| Johannes Kepler

Q& JOHANNES KEPLER
l \ UNIVERSITY LINZ

@ 2015-11-23 | Johannes Kepler University Linz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

