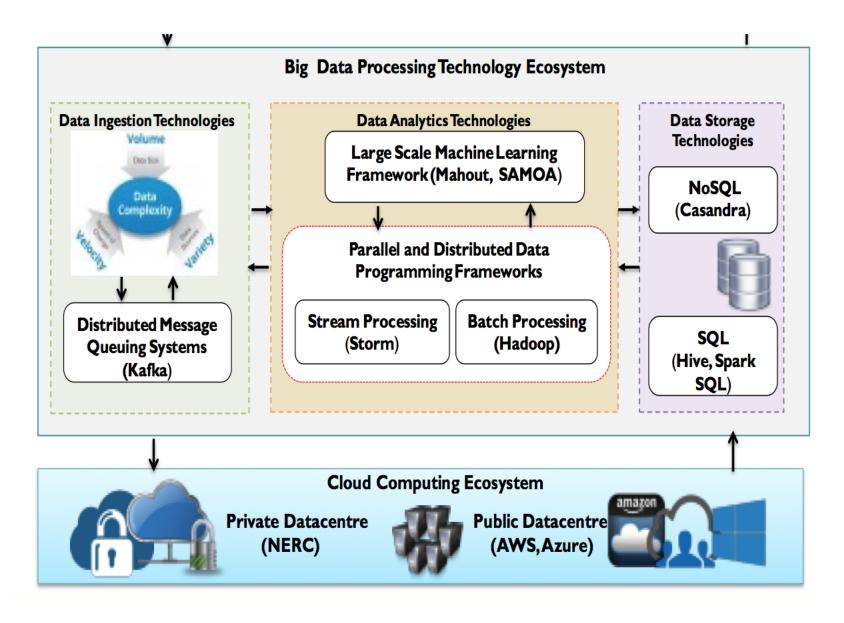
Resource and Performance Distribution Prediction for Large Scale Analytics Queries

Prof. Rajiv Ranjan, SMIEEE

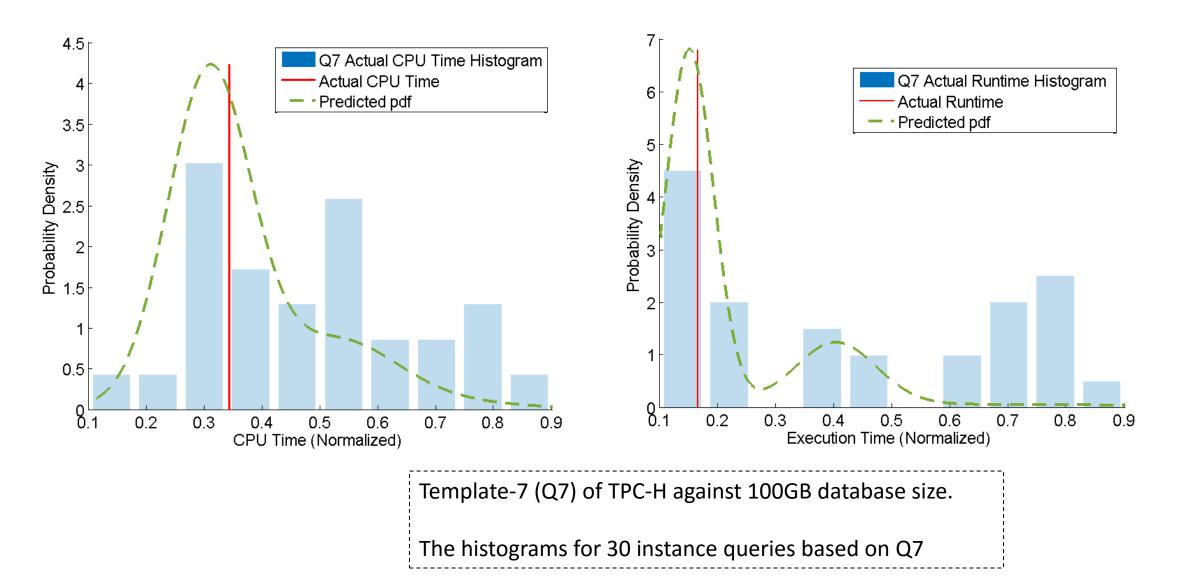
School of Computing Science, Newcastle University, UK Visiting Scientist, Data61, CSIRO, Australia Guest Professor, Chinese University of Geosciences

Heterogeneous **Programming Models** running on Big data Cluster



Resource provisioning Workload scheduling Admission control

Motivation



Goal

• Resource and Performance *Distribution* Prediction For *Hive Queries*

Approach Overview

• To predict performance <u>distribution</u> of Hive workloads, we use knowledge of Hive query execution combined with machine learning techniques.

Hive: data warehousing application in Hadoop

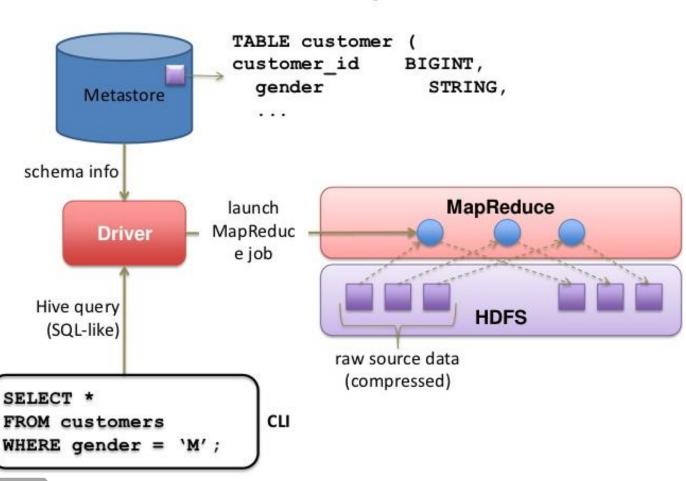
- Query language is HQL, variant of SQL
- Tables stored on HDFS as flat files
- Developed by Facebook, now open source

Query Processing in Hive

- Hive looks similar to an SQL database
 - SQL specific operators (e.g. table scan, select) implemented in map and reduce functions
 - MapReduce specific tasks (e.g., read, spill, shuffle, write)
 - End-to-End execution time depends on the number of mappers and reducers and their runtime performance.

Model Selection

Feature Selection



Hive components

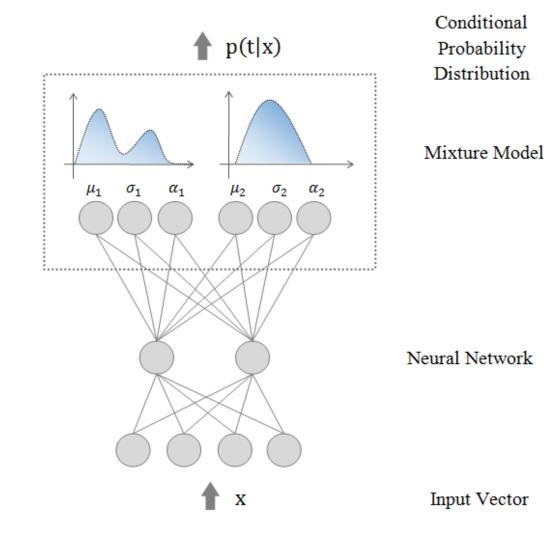
Feature list for training the model

Feature Name	Description		
SQL Operator No	Number of SQL operators (e.g. Table Scan) which appear in the HiveQL query plan.		
SQL Operator Input Records	Total number of rows affected by each operator in the query plan (e.g., a query operator uses 1000 rows to answer the query)		
SQL Operator Input Byte	Input Data Size to SQL operator.		
MapReduce Operator No	Number of MapReduce operators (e.g. Reduce Output Operator), appear in the HiveQL query plan.		
MapReduce Operator Input Records	Total number of row processed by each mapper/reducer.		
MapReduce Operator Input Byte	Input Data Size to the MapReduce specific workflow steps (e.g. reading, spilling, shuffling, writing)		

> Training and Testing

Mixture Density Network

- MDN = Neural Network + Mixture Model
- MDN uses Gaussian mixture model with multilayer perceptron
- Neural Network: x ---> mixture model (μ , σ , α)
 - Returns the conditional distribution p(t | x)



Training and Testing: Workload

- The data set we used contains 995 queries that were generated based on TPC-H benchmark.
- TPC-H queries were executed on six scaling factors: 2, 5, 25, 50, 75, and 100 <u>GB</u>.
- We divided the workload randomly into training and testing datasets with 66% and 34% respectively.
- we use a <u>Netlab</u> toolbox which is designed for the simulation of neural network algorithms and related models, in particular <u>MDN</u>.

Experiment: Setup

- The models are evaluated on CSIRO Big Data cluster. The cluster comprises of 14 worker nodes.
- All experiments were run on top of HiveQL 0.13.1, and Hadoop 2.3.0 in Yarn mode on.
- The cluster comprises of 14 worker nodes connected with fast <u>Infiniband</u> network, each featuring 2 x Intel <u>Xeon E5</u>-2660 @ 2.20 GHz CPU (8 cores), 128 GB RAM and 12 x 2 TB <u>NL-SAS HD</u> making up the total disk space of 240 TB.

Experiment: Error metrics

continuous ranked probability score (<u>CRPS</u>)

$$CRPS(F,t) = \int_{-\infty}^{\infty} \left[F(x) - O(x,t) \right]^2 dx$$

negative log predictive density (<u>NLPD</u>)

$$NLPD = rac{1}{n}\sum_{i=1}^n -log(p(t_i|x_i))$$

• root mean-square error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (t_i - m_i)^2}$$

Experiment: State of the art techniques

- Support Vector Machine (SVM)
- REPTree
- Multilayer Perceptron

Experiment: Results

• Accuracy of the Model

MDN					
Target	CRPS	NLPD			
CPU Time	0.024	-2.65			
Response Time	0.017	-3.2			

 MDN accuracy as per distribution specific metric error

SVM	MDN
RMSE	RMSE
0.08	0.048
0.073	0.031

MDN accuracy compared to competing SVM model

Experiment: Results

- Training time of the MDN Model
 - Training times in seconds with regard to different workload sizes for 500 iterations.

Workload Size	1 <i>K</i>	2 <i>K</i>	4 <i>K</i>	8 <i>K</i>	16 <i>K</i>
Elapsed Time (Sec)	1.47	1.9	2.63	3.84	7.83

Experiment: Results Summary

In summary, our approach *outperforms* the state of the art single point techniques in 2 out of 4 experiments conducted using SVM and REPTree.

This result is quite promising because it shows that our approach is <u>not only</u> able to predict the full distribution over targets accurately, it is <u>also</u> a <u>reliable single point</u> estimator.

We presented a novel approach of using **Mixture Density Networks** for **Performance Distribution Prediction** of Hive Queries

For future work:

Distribution-based Admission Controller and Query Scheduler

Thank You!

• Questions...