The Value of Variance

Jesun Firoz, **Martina Barnas,** Marcin Zalewski, and Andrew Lumsdaine

CREST, Indiana University School of Informatics and Computing, Bloomington, IN, USA

INDIANA UNIVERSITY Center for Research in Extreme Scale Technologies

Center for Research in Extreme Scale Technologies (CREST) runtime and applications for exascale

Outline

- "Theory"
 - National Institute of Standards and Technology (NIST) guidelines
 - Law of propagation of uncertainty
 - ADJUSTED SPEEDUP EQUATION
- Experimental Setup
 - hardware runtimes algorithms and input
- Two comments about the algorithms
- Experimental results
- Summary and Conclusions

National Institute of Standards and Technology (NIST) guidelines

- Consider a quantity being measured, Y, in terms of other quantities, $X_{\rm i}\,$:

$$Y = f(X_1, X_2, \dots, X_N)$$

- The estimate: $y = f(x_1, x_2, \dots, x_N)$
- Sample mean of inputs :

$$x_i = \overline{X}_i = \frac{1}{n} \sum_{k=1}^n X_{i,k}$$

• Standard deviation as uncertainty measurement

$$u(x_i) = u_i = \sigma_i = \left(\frac{1}{n(n-1)}\sum_{k=1}^n (X_{i,k} - \overline{X}_i)^2\right)^{\frac{1}{2}}.$$

The law of propagation of uncertainty

 If multiple quantities X₁,X₂,..,X_N are involved in the calculation of estimate y, the combined standard uncertainty is the positive square root of the estimated variance σ²(y) obtained from

$$\sigma^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma^2(x_i) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \sigma(x_i, x_j).$$

Adjusted Speedup Equation

- Consider average execution time of two algorithms A and B as $\overline{t_A}$ and $\overline{t_B}_{\!\!\!,}$ (with uncertainty)
- Speedup equation:

$$S = \frac{\overline{t}_A}{\overline{t}_B}$$
.

• Proposed adjusted speedup equation:

 $S_{adj} = S \pm \sigma_i$

where

$$\sigma^{2} = \frac{1}{\bar{t}_{B}^{2}} \sigma_{A}^{2} + \frac{\bar{t}_{A}^{2}}{\bar{t}_{B}^{4}} \sigma_{B}^{2}.$$

EXPERIMENTAL SETUP

Experimental Setup - hardware

- Experiments on Indiana University's BigRed 2 Cray XE6/XK7 supercomputer
 - two AMD Opteron 16-core x86 64 CPUs per node
 - 64 GB of RAM per node
 - Gemini interconnect
- 1 to 16 compute nodes for weak scaling (starting from scale 14)
 - 16 threads per node

Experimental Setup -- runtime

- (hardware BigRed2 CRAY)
- two different runtimes:
 - HPX-5 under development
 - AM++ less feature rich, but well optimized to balance quick work delivery vs. communication overhead

Experimental Setup – algorithm and data

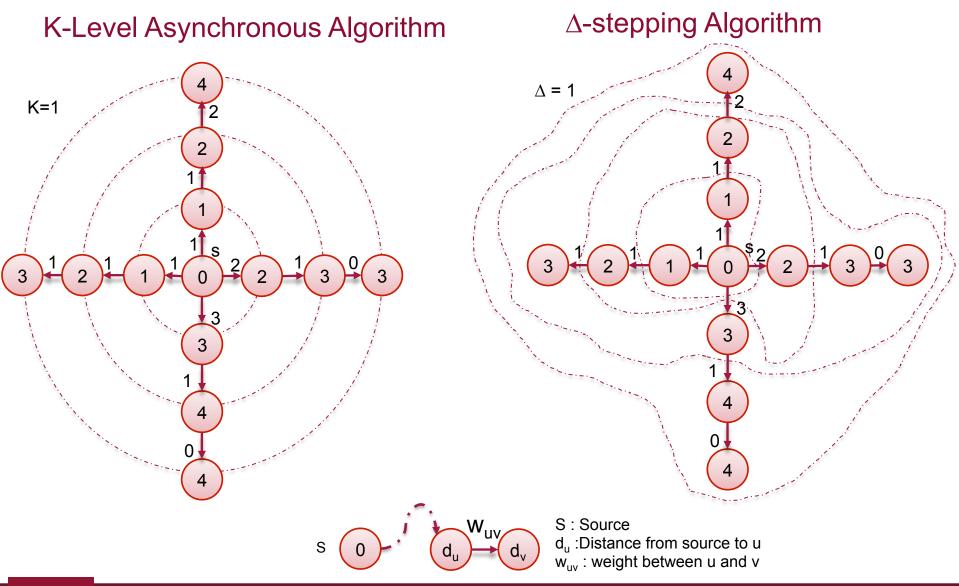
- (hardware BigRed2 CRAY)
- (runtime HPX-5, AM++)
- two different distributed algorithms for SSSP problem
 - KLA with K=2
 - Δ -stepping with Δ =1
 - NOT OPTIMIZED FOR MAXIMUM PERFORMANCE!
- Input graph
 - With Graph500 RMAT generator
 - Maximum edge weight 255 and 100
 - Scale 14 (1 node) to scale 18 (16 nodes)

Experimental setup

- (hardware BigRed2 CRAY)
- (runtime HPX-5, AM++)
- (algorithms KLA SSSP, Δ -stepping SSSP)
- (input Graph500)
- Experiments:
 - 5 runs for each scale
 - 8 problem instances per run (different starting point source)

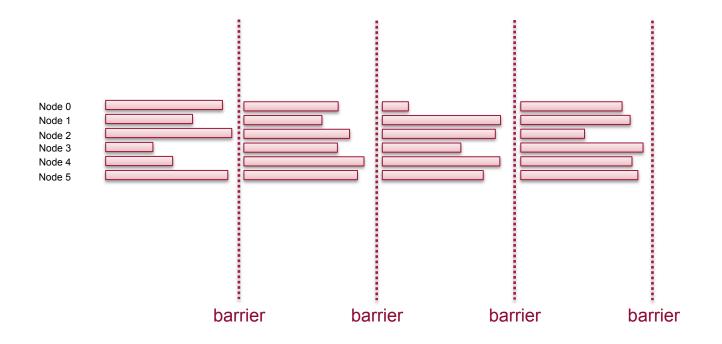
TWO COMMENTS ABOUT THE ALGORITHMS

Distributed Algorithms for SSSP



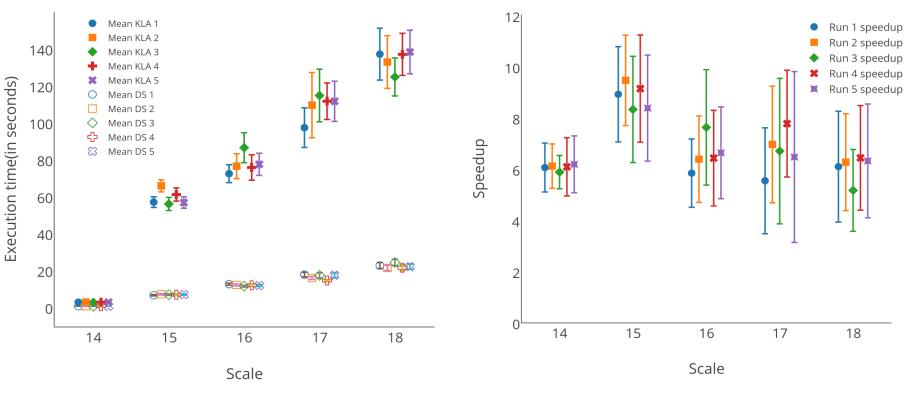
INDIANA UNIVERSITY Center for Research in Extreme Scale Technologies INDIANA UNIVERSITY school of informatics and computing

Distributing work over nodes – Strangler Effect



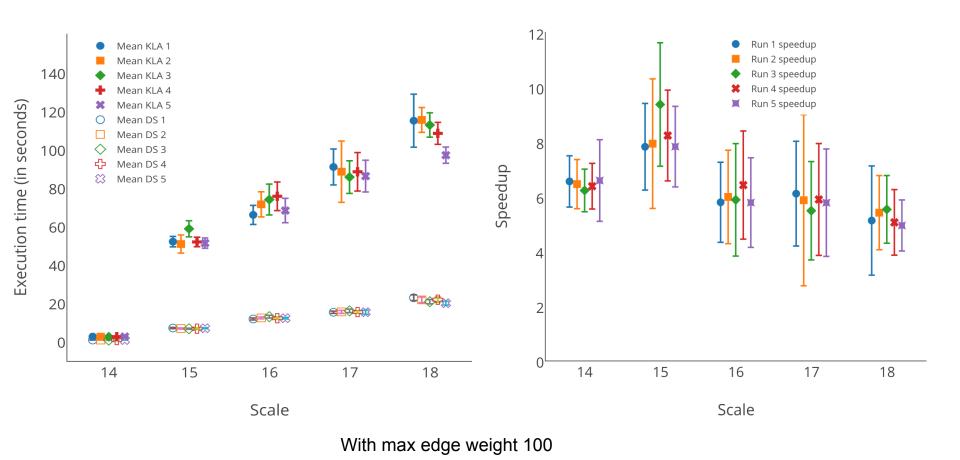
EXPERIMENTAL RESULTS

Reporting Speedup Uncertainty: On HPX-5 Runtime



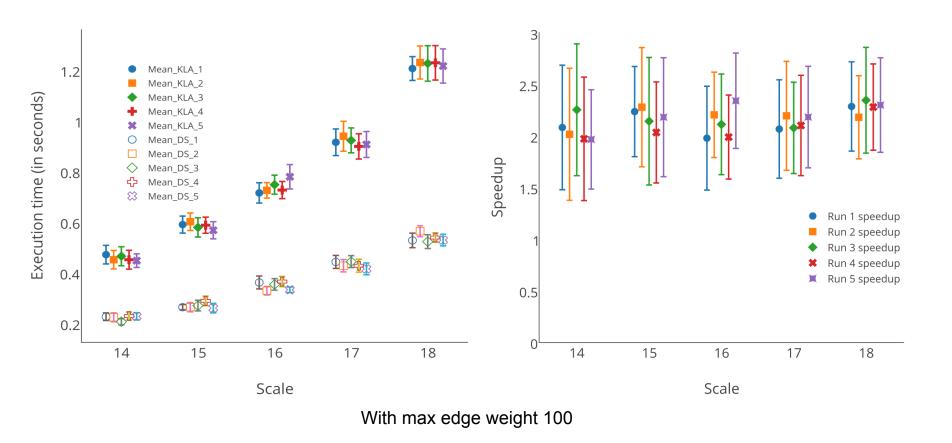
With max edge weight 255

Reporting Speedup Uncertainty: On HPX-5 Runtime (cont.)

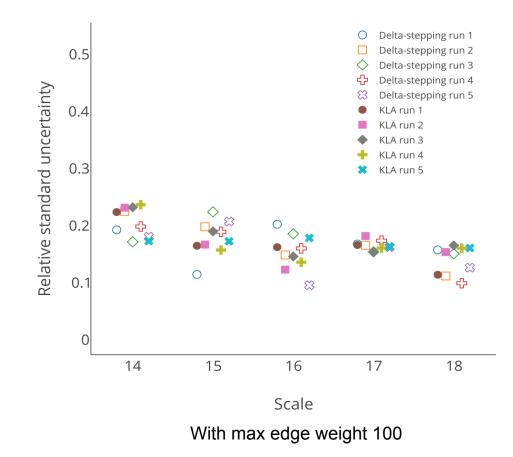


CREST

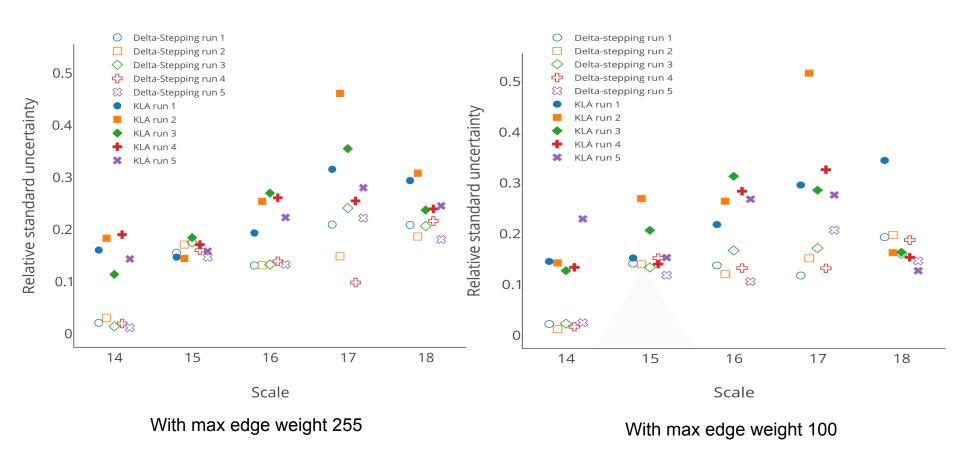
Reporting Speedup Uncertainty: On AM++ Runtime



Relative Standard Uncertainty: On AM++ Runtime (execution times)



Relative Standard Uncertainty: On HPX-5 Runtime (execution times)



SUMMARY AND CONCLUSIONS

Summary and Conclusions

- We looked at how standard deviation improves our insight from data
 - Simple to include
 - Additional insight that is lacking from aggregate measures (means)
 - Allows to drill down to what is interesting
 - Allows more meaningful comparison across different experiments
- Experiments using two distributed SSSP algorithms and two runtimes on BigRed2 CRAY
- **DISCLAIMER** NOT about the algorithms and/or runtimes
 - During development of HPX-5; AM++ mature
 - Algorithm parameters not tuned

NOT INDICATIVE OF WHAT ALGORITHMS OR RUNTIMES CAN DO

• ALL ABOUT DATA and METHODOLOGY

