

## Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

<u>Weikun Wang</u> (Imperial College London, UK) Giuliano Casale (Imperial College London, UK) Ajay Kattepur (TCS Innovation Labs, India) Manoj Nambiar (TCS Innovation Labs, India)

ACM/SPEC ICPE 2016 - March14<sup>th</sup>, 2016

### SPE & Model-Driven Engineering London Model-Drives Engineering





Imperial College

ondon

## Drawback of Existing methods London CONSULTANCY SERVICES

### Utilization based approaches

- Regression based on utilization and throughput
- Issues: collinearities, load-dependence, outliers, utilization unreliable/unavailable, ...



# Queue length samples

- State observations
  - Dataset (L points):  $\boldsymbol{n}^l \in \boldsymbol{D}_l$
  - CQN State:  $n = (n_{01}, \dots, n_{0R}, n_{11}, \dots, n_{1R}, \dots, n_{MR})$



# Queue length samples

- State observations
  - Dataset (L points):  $\boldsymbol{n}^l \in \boldsymbol{D}_l$
  - CQN State:  $n = (n_{01}, \dots, n_{0R}, n_{11}, \dots, n_{1R}, \dots, n_{MR})$



# Queue length samples

Assume product-form state probabilities

$$\mathbb{P}(\boldsymbol{n}|\boldsymbol{\theta}) = \prod_{j=1}^{R} \frac{\theta_{0j}^{n_{0j}}}{n_{0j}!} \prod_{i=1}^{M} n_{i}! \prod_{j=1}^{R} \frac{\theta_{ij}^{n_{ij}}}{n_{ij}!G(\boldsymbol{\theta})}$$
Normalizing constant

Computationally challenging to evaluate  $\mathbb{P}(n|\theta)$ 

Maximum likelihood estimation?

Infer demands with the probability

## Maximum Likelihood Estimation Imperial College London

Maximum likelihood estimation (MLE)

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \prod_{l=1}^{L} \mathbb{P}(\boldsymbol{n}^{l} | \boldsymbol{\theta})$$
parameter space Likelihood  $\mathcal{L}(\boldsymbol{\theta})$ 

#### Problem with direct computation

- Evaluation of  $\mathbb{P}(\boldsymbol{n}|\boldsymbol{\theta})$  for each observation
- Slow due to the need for computing  $G(\boldsymbol{\theta})$
- Very small probabilities when L is large
- Any other solution?

Maximum Likelihood Estimation Imperial College London

A necessary condition for a point  $\hat{\theta}$  inside  $\Theta$  to be a MLE is that



Only **mean** queue length is required!

#### How to find the MLE?

- Change the value of  $\theta$ , until the mean queue length predicted with MVA match  $\widetilde{Q}_{ij}(D)$
- Fixed point iteration or an optimization program

Assume the MLE to be asymptotically normal

Confidence intervals for the MLE demands

$$\hat{\theta}_{ij} \pm c \sqrt{(\boldsymbol{I}(\hat{\boldsymbol{\theta}})^{-1})_{ij,ij}}$$

- *I*(\$\heta\$) = -*H*(\$\heta\$) is the Fisher Information matrix
   *H*(\$\heta\$) is the Hessian matrix *H*(\$\theta\$)<sub>ij,kh</sub> = \frac{\partial^2 \log \mathcal{L}(\theta)}{\partial \theta\_{ij} \partial \theta\_{kh}} \Big|\_{\theta = \heta\$}
- $H(\hat{\theta})$  works with mean queue length only!
  - Obtained by using standard MVA, no probabilities!

Exact MLE can be found by direct search

- Fixed-point iteration tends to be effective
- A simple approximation of the MLE:
  - Consider the demand vector  $\theta^{bs}$  where

 $\theta_{ij}^{bs} = \frac{\widetilde{Q}_{ij}(D)}{(N_j - \sum_{k=1}^M \widetilde{Q}_{kj})} \frac{\theta_{0,j}}{(1 + \sum_{h=1}^R \widetilde{Q}_{ih} - \widetilde{Q}_{ij}(D)/N_j)}$ **I** Then it must be

$$Q_{ij}^{bs}(\boldsymbol{\theta}^{bs}) = \widetilde{Q}_{ij}(\boldsymbol{D})$$
observed mean gueue length

# Validation- Existing methods London

- CI: Complete Information
  - [J.F. Perez et al., IEEE Trans. Sw. Eng.'15]
  - Full knowledge of sample path
  - Baseline approach
- ERPS: Extended Regression for Processor Sharing
   [J.F. Perez et al., IEEE Trans. Sw. Eng.'15]
   Based on mean response time and arrival queue
- GQL: Gibbs Sampling for Queue Lengths

[W. Wang et al., Accepted to appear in ACM TOMACS]

- Gibbs sampling based on queue length samples
- Many iterations until convergence

# Validation



Number of observations

#### ■ ≈20000 random models

- Randomized number of stations, classes, jobs
- Focus on QMLE instead of exact analysis

### Results

- All the algorithms: below 10%
- QMLE has less than 4% error
- Confidence interval validated





Imperial College London CONSULTANCY SERVICES

## Load-dependent (LD) extension Imperial College London

- Mean demand varies under different load
- Real world system behavior
  - e.g. multi-core servers



15

## Load-dependent (LD) extension London

• A scaling factor function  $\gamma_i(u)$ 

Ioad-independent:  $\gamma_i(u) = 1, 1 \leq u \leq n_i$ 

Product-form still holds

$$\mathbb{P}(\boldsymbol{n}|\boldsymbol{\theta},\boldsymbol{\gamma}) = \left(\prod_{j=1}^{R} \frac{\theta_{0j}^{n_{0j}}}{n_{0j}!}\right) \prod_{i=1}^{M} n_{i}! \prod_{j=1}^{R} \frac{\theta_{ij}^{n_{ij}}}{n_{ij}!G(\boldsymbol{\theta})} \prod_{u=1}^{n_{i}} \gamma_{i}(u)$$

new term

MLE

$$(\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\gamma}}) = \arg \max_{(\boldsymbol{\theta}, \boldsymbol{\gamma}) \in \boldsymbol{\Theta}} \prod_{l=1}^{L} \mathbb{P}(\boldsymbol{n}^{l} | \boldsymbol{\theta}, \boldsymbol{\gamma})$$

# MLE characterization

Directly computation is infeasible
 A necessary condition for a point (θ̂, γ̂) inside Θ
 to be a MLE is that

$$Q_{ij}(\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\gamma}}) = \widetilde{Q}_{ij}(\boldsymbol{D}), \quad \forall i, j$$

and

$$\mathbb{P}(n_k = v | \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\gamma}}) = \mathbb{P}(\widetilde{n}_k = v | \boldsymbol{D}), \qquad \forall k, v$$
Theoretical marginal
Empirical marginal

Theoretical marginal queue length probability

Empirical marginal queue length probability

Works with marginal probability only!

# MLE characterization

- How to find the MLE?
  - Solve by optimization program
- Confidence intervals
  - Hessian matrix can still be derived
  - Computation requires marginal probabilities and mean queue length only

#### Drawback

Computationally expensive because of LD-MVA



### Random models validation

- 2 stations, 2 classes, 8 jobs, different think time
- MATLAB *fmincon* solver
- Compare the estimated  $(\hat{\theta}, \hat{\gamma})$  against exact ones

### Considered scaling factors

- $\gamma_i(u) = 1/\min(u, C_i)$ : resembles multi-core feature
  - $C_i$  number of CPUs in queueing station i.

### Estimation error on $\gamma$ (scaling factors) Imperial College London



## **Execution time**



**Imperial College** 

london

### Case Study (MyBatis JPetStore)

3-tier commercial application



**Imperial College** 

London

- Transactions grouped in R=1 class
- 5 GB user data



### Observed performance matching Imperial College London

#### Exact demand unknown

- Estimated demands using QMLE
- Validate observed throughput with estimated demands





Demand estimation from queue length

- Efficient
- Confidence interval characterization
- Load-dependent extension
- Ongoing work
  - Accelerate the load-dependent estimation
  - More experimental evaluations

Funded by FP7 MODAClouds, H2020 DICE, EPSRC OptiMAM

## Thanks!





# weikun.wang11@imperial.ac.uk