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CQN Characterization
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 Service demand of a request

 CPU time, bandwidth consumed, …

 Multi-threaded software

 e.g., web servers
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Drawback of Existing methods

 Utilization based approaches

 Regression based on utilization and throughput

 Issues: collinearities, load-dependence, outliers, 
utilization unreliable/unavailable, …
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 State observations

 Dataset (   points):

 CQN State:

Queue length samples
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 State observations

 Dataset (   points):

 CQN State:

Queue length samples
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 Assume product-form state probabilities

 Computationally challenging to evaluate

 Maximum likelihood estimation?

 Infer demands with the probability 

Queue length samples

Service demand

Normalizing constant

Queue length
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 Maximum likelihood estimation (MLE)

 Problem with direct computation

 Evaluation of             for each observation 

 Slow due to the need for computing  

 Very small probabilities when L is large

 Any other solution?

Maximum Likelihood Estimation

parameter space
Likelihood 
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 A necessary condition for a point     inside     to 
be a MLE is that 

 How to find the MLE?

 Change the value of    , until the mean queue 
length predicted with MVA match 

 Fixed point iteration or an optimization program

Maximum Likelihood Estimation

observed mean 
queue length

theoretical mean 
queue length

Only mean
queue length 
is required!
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Confidence Intervals

 Assume the MLE to be asymptotically normal

 Confidence intervals for the MLE demands

 is the Fisher Information matrix

 is the Hessian matrix

 works with mean queue length only!

 Obtained by using standard MVA, no probabilities!
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QMLE Approximation

 Exact MLE can be found by direct search

 Fixed-point iteration tends to be effective

 A simple approximation of the MLE:

 Consider the demand vector      where 

 Then it must be 

observed mean 
queue length
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Validation- Existing methods

 CI: Complete Information
[J.F. Perez et al., IEEE Trans. Sw. Eng.’15]

 Full knowledge of sample path

 Baseline approach

 ERPS: Extended Regression for Processor Sharing

[J.F. Perez et al., IEEE Trans. Sw. Eng.’15]

 Based on mean response time and arrival queue

 GQL: Gibbs Sampling for Queue Lengths

[W. Wang et al., Accepted to appear in ACM TOMACS]

 Gibbs sampling based on queue length samples

 Many iterations until convergence
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Validation

 ≈20000 random models

 Randomized number of stations, classes, jobs

 Focus on QMLE instead of exact analysis

 Results

 All the algorithms: below 10%

 QMLE has less than 4% error

 Confidence interval validated

Number of 
observations
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 Mean demand varies under different load 

 Real world system behavior

 e.g. multi-core servers

Load-dependent (LD) extension
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 A scaling factor function 

 load-independent : 

 Product-form still holds

 MLE

Load-dependent (LD) extension

new term
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 Directly computation is infeasible

 A necessary condition for a point        inside     

to be a MLE is that 

and

 Works with marginal probability only!

MLE characterization

Empirical marginal 
queue length probability

Theoretical marginal 
queue length probability
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 How to find the MLE?

 Solve by optimization program

 Confidence intervals

 Hessian matrix can still be derived

 Computation requires marginal probabilities and 
mean queue length only

 Drawback

 Computationally expensive because of LD-MVA

MLE characterization
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Validation

 Random models validation

 2 stations, 2 classes, 8 jobs, different think time

 MATLAB fmincon solver

 Compare the estimated          against exact ones

 Considered scaling factors

 : resembles multi-core feature

– number of CPUs in queueing station i.
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Progress: We found a new approximation 
method for efficiently evaluating marginal 
probabilities, which reduces the execution 
time to < 20s on average!
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Case Study (MyBatis JPetStore)

 3-tier commercial application

 Transactions grouped in R=1 class

 5 GB user data 

User 1
Worker Database

Web/Application server

Workload 

Generator
Dispatcher

Database server
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Observed performance matching

 Exact demand unknown

 Estimated demands using QMLE

 Validate observed throughput with estimated demands
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Conclusion

 Demand estimation from queue length

 Efficient

 Confidence interval characterization

 Load-dependent extension

 Ongoing work

 Accelerate the load-dependent estimation

 More experimental evaluations

Funded by FP7 MODAClouds, H2020 DICE, EPSRC OptiMAM
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